Regression Testing of Transcompiled Cross-Platform Applications

Total Page:16

File Type:pdf, Size:1020Kb

Regression Testing of Transcompiled Cross-Platform Applications Regression Testing of Transcompiled Cross-Platform Applications Dissertation der Mathematisch- und Naturwissenschaftlichen Fakult¨at der Eberhard Karls Universit¨atT¨ubingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Dipl.-Inform. Matthias Hirzel aus M¨unsingen T¨ubingen 2018 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Eberhard Karls Universit¨atT¨ubingen. Tag der m¨undlichen Qualifikation: 20.09.2018 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Herbert Klaeren 2. Berichterstatter: Prof. Dr. Torsten Grust Abstract Regression testing is a well-accepted and widely used way to ensure that already existing functionality still works as expected when code has been modified in order to realize new features or to resolve known bugs. To this end, devel- opers re-execute previously created tests and check whether these tests still pass. However, depending on the application, regression testing might be very time consuming. This already applies when testing small units, but plays a more and more decisive role when integrated functions and especially end-to- end tests (such as UI or web tests) have to be re-executed. In the worst case, executing all the tests takes several days or even weeks. Consequently, it takes far too much time to get feedback about test failures. In order to solve this problem, researches have presented many different techniques. Originally, these techniques have been tailor-made for standard desktop applications. With the dawn of web applications, it has turned out that the approaches available so far are not directly applicable to web applications. So more and more researches have attended to the special challenges to realize regression testing techniques for this new kind of application. In both standard desktop and web applica- tions, especially regression test selection and test prioritization have shown to be a good strategy to reduce the testing effort. Today, another kind of applications becomes more and more important: Transcompiled cross-platform applications. The basic idea is to create an ap- plication in a source programming language A and to compile it automatically with a special transcompiler into another target programming language B. This way of developing new software has several advantages in different ar- eas: In web applications for example, it is easier to write the software in a specific source programming language that has sophisticated debug support. In mobile applications, it is a means of cost reduction. The developers write an application only once. By transcompiling the code, they can deliver many different platforms such as Android, iOS, and Windows Phone. Apart from that, with transcompilation, it is basically possible to create both a desktop application and a web application without writing the code twice. Neverthe- less, this new way of developing code creates several challenges in regression testing. Once more, existing approaches for desktop or web applications are not directly applicable. In this thesis, we investigate three main problems that affect regression test- ing in the special context of transcompiled cross-platform applications. First, i ii we focus on the test effort reduction problem that comprises three questions: (a) Which tests should run at all, (b) how to execute tests in an efficient, memory- and time-saving way, and (c) which execution order would be suitable if many tests should be re-executed. A main challenge is the nature of UI/web tests as they execute many different functions in different application states rather than isolated, small functions as unit tests do. Even small code changes might affect lots of tests that are all intended to check different functionality. In addi- tion, the distinction between source and target programming language as well as the dependencies in between makes it difficult to determine a reduced set of UI/web test cases that should be re-executed due to code changes. The second problem addresses fault localization in transcompiled cross- platform applications. UI/web tests execute code in the target programming language. If a test fails, the decisive question is which parts in the code of the source programming language are responsible for the failure. Due to the automatic transcompilation and additional code optimization and obfuscation, it is difficult to identify the reasons. As a solution to these problems, we present an approach that improves and extends an already existing regression test selection technique. Our approach consists of several steps. First of all, it analyzes which code changes have been made in the source programming language. Based on this analysis, we select all the UI/web tests that run corresponding pieces of code in the target programming language. As a prerequisite, we have to close the gap between the source and the target programming language. To overcome this issue, we introduce and investigate two special code instrumentation techniques. They are universally applicable in different transcompilers and address the special challenges in transcompiled cross-platform applications. Both instrumentation techniques also take into account the problem to identify precisely which code change(s) in the source programming language might be responsible for a failure when running a test on the code of the target language. In order to make our approach more effective, we explore different settings. Our aim is to reduce the overhead for the analysis and to keep the memory consumption as low as possible. To this end, we propose and evaluate several heuristics that decide individually how fine-grained the analysis of the source code should be. Besides, we apply lookaheads and two search algorithms to detect more possible bugs in a single analysis. In order to decide which execution order is suitable if many tests have to be re-executed, we combine our regression test selection technique with one of six novel prioritization techniques. The overhead of the extra test case prioritization is very low. At the same time, the prioritization gives a clear test execution order. Thus, the most important tests that have the biggest chance to reveal faults run first. This even enables developers to reduce the set of tests on their own if the test selection chooses many tests for re-execution and if there are constraints (e.g. execution time) that prevent to re-execute all the tests. Moreover, the combination of test selection and prioritization can be used to realize continuous integration even for UI/web tests. iii Finally, the third challenge arises from the coverage identification problem. In order to ensure that the software application works as expected, it is very important to have many tests that cover all possible use cases. Usually, this is checked by applying different code coverage metrics. However, existing code coverage tools cannot be applied in transcompiled cross-platform applications. They fail to determine which parts of the code in the source programming language are covered by UI/web tests. We introduce an extension of our in- strumentation technique that is applicable for both unit tests, integration tests, and for UI/web tests in particular. It supports standard desktop applications, but more importantly, it calculates multiple coverage measures for transcom- piled cross-platform applications. Zusammenfassung Regressionstests sind eine anerkannte und weit verbreitete Methode um die kor- rekte Funktionsweise bereits existierender Features in Software-Anwendungen sicherzustellen, nachdem neue Funktionalit¨athinzugef¨ugtoder bekannte Fehler behoben wurden. Zu diesem Zweck f¨uhrenEntwickler bereits existierende Tests erneut aus und pr¨ufen,ob sie noch immer fehlerfrei durchlaufen. Je nach Art der Software-Anwendung k¨onnenRegressionstests jedoch sehr zeitintensiv sein. Dies kann bereits auf den Test kleiner Komponenten (englisch: Units) zutreffen, spielt aber eine immer gr¨oßereRolle wenn zusammengesetzte Funktionen oder End-to-end Tests { wie (Benutzer-) Oberfl¨achentests oder Webtests { erneut ausgef¨uhrtwerden m¨ussen. Im schlimmsten Fall dauert die Ausf¨uhrungaller Tests mehrere Tage oder sogar Wochen. Folglich dauert es viel zu lange bis man Feedback zu fehlgeschlagen Tests erh¨alt. Um dieses Problem zu l¨osen haben Forscher viele verschiedene Techniken vorgestellt. Urspr¨unglich waren diese auf gew¨ohnliche Desktop-Anwendungen zugeschnitten. Mit dem Aufkom- men von Web-Anwendungen hat sich dann herausgestellt, dass sich die bislang verf¨ugbarenAns¨atzedarauf nicht direkt ¨ubertragen lassen. Aus diesem Grund haben sich immer mehr Forscher den speziellen Herausforderungen gewidmet, die sich aus der Realisierung von Regressionstesttechniken f¨urdiese neue Art von Anwendung ergeben. Sowohl in Desktop- als auch in Web-Anwendungen haben sich speziell Regressionstestselektion und Testpriorisierung als eine gute Strategie erwiesen, um den Testaufwand zu reduzieren. Heutzutage gewinnt eine andere Art von Anwendung immer gr¨oßereBedeu- tung: Transkompilierte plattform¨ubergreifende Anwendungen. Der Grundge- danke dabei ist, eine Anwendung in einer Ausgangsprogrammiersprache A zu erstellen und mit Hilfe eines speziellen Transkompilers automatisch in eine an- dere Zielprogrammiersprache B zu kompilieren. Diese Art der Entwicklung neuer Software hat mehrere Vorteile in unterschiedlichen Bereichen: Beispiels- weise ist es in Web-Anwendungen einfacher, die Software in einer speziellen Ausgangsprogrammiersprache zu schreiben die
Recommended publications
  • A Methodology for Assessing Javascript Software Protections
    A methodology for Assessing JavaScript Software Protections Pedro Fortuna A methodology for Assessing JavaScript Software Protections Pedro Fortuna About me Pedro Fortuna Co-Founder & CTO @ JSCRAMBLER OWASP Member SECURITY, JAVASCRIPT @pedrofortuna 2 A methodology for Assessing JavaScript Software Protections Pedro Fortuna Agenda 1 4 7 What is Code Protection? Testing Resilience 2 5 Code Obfuscation Metrics Conclusions 3 6 JS Software Protections Q & A Checklist 3 What is Code Protection Part 1 A methodology for Assessing JavaScript Software Protections Pedro Fortuna Intellectual Property Protection Legal or Technical Protection? Alice Bob Software Developer Reverse Engineer Sells her software over the Internet Wants algorithms and data structures Does not need to revert back to original source code 5 A methodology for Assessing JavaScript Software Protections Pedro Fortuna Intellectual Property IP Protection Protection Legal Technical Encryption ? Trusted Computing Server-Side Execution Obfuscation 6 A methodology for Assessing JavaScript Software Protections Pedro Fortuna Code Obfuscation Obfuscation “transforms a program into a form that is more difficult for an adversary to understand or change than the original code” [1] More Difficult “requires more human time, more money, or more computing power to analyze than the original program.” [1] in Collberg, C., and Nagra, J., “Surreptitious software: obfuscation, watermarking, and tamperproofing for software protection.”, Addison- Wesley Professional, 2010. 7 A methodology for Assessing
    [Show full text]
  • Polyhedral Compilation As a Design Pattern for Compiler Construction
    Polyhedral Compilation as a Design Pattern for Compiler Construction PLISS, May 19-24, 2019 [email protected] Polyhedra? Example: Tiles Polyhedra? Example: Tiles How many of you read “Design Pattern”? → Tiles Everywhere 1. Hardware Example: Google Cloud TPU Architectural Scalability With Tiling Tiles Everywhere 1. Hardware Google Edge TPU Edge computing zoo Tiles Everywhere 1. Hardware 2. Data Layout Example: XLA compiler, Tiled data layout Repeated/Hierarchical Tiling e.g., BF16 (bfloat16) on Cloud TPU (should be 8x128 then 2x1) Tiles Everywhere Tiling in Halide 1. Hardware 2. Data Layout Tiled schedule: strip-mine (a.k.a. split) 3. Control Flow permute (a.k.a. reorder) 4. Data Flow 5. Data Parallelism Vectorized schedule: strip-mine Example: Halide for image processing pipelines vectorize inner loop https://halide-lang.org Meta-programming API and domain-specific language (DSL) for loop transformations, numerical computing kernels Non-divisible bounds/extent: strip-mine shift left/up redundant computation (also forward substitute/inline operand) Tiles Everywhere TVM example: scan cell (RNN) m = tvm.var("m") n = tvm.var("n") 1. Hardware X = tvm.placeholder((m,n), name="X") s_state = tvm.placeholder((m,n)) 2. Data Layout s_init = tvm.compute((1,n), lambda _,i: X[0,i]) s_do = tvm.compute((m,n), lambda t,i: s_state[t-1,i] + X[t,i]) 3. Control Flow s_scan = tvm.scan(s_init, s_do, s_state, inputs=[X]) s = tvm.create_schedule(s_scan.op) 4. Data Flow // Schedule to run the scan cell on a CUDA device block_x = tvm.thread_axis("blockIdx.x") 5. Data Parallelism thread_x = tvm.thread_axis("threadIdx.x") xo,xi = s[s_init].split(s_init.op.axis[1], factor=num_thread) s[s_init].bind(xo, block_x) Example: Halide for image processing pipelines s[s_init].bind(xi, thread_x) xo,xi = s[s_do].split(s_do.op.axis[1], factor=num_thread) https://halide-lang.org s[s_do].bind(xo, block_x) s[s_do].bind(xi, thread_x) print(tvm.lower(s, [X, s_scan], simple_mode=True)) And also TVM for neural networks https://tvm.ai Tiling and Beyond 1.
    [Show full text]
  • Haxe Game Development Essentials
    F re e S a m p le Community Experience Distilled Haxe Game Development Essentials Create games on multiple platforms from a single codebase using Haxe and the HaxeFlixel engine Jeremy McCurdy In this package, you will find: The author biography A preview chapter from the book, Chapter 1 'Getting Started' A synopsis of the book’s content More information on Haxe Game Development Essentials About the Author Jeremy McCurdy is a game developer who has been making games using ActionScript, C#, and Haxe for over four years. He has developed games targeted at iOS, Android, Windows, OS X, Flash, and HTML5. He has worked on games that have had millions of gameplay sessions, and has built games for many major North American television networks. He is the games technical lead at REDspace, an award-winning interactive studio that has worked for some of the world's largest brands. They are located in Nova Scotia, Canada, and have been building awesome experiences for 15 years. Preface Developing games that can reach a wide audience can often be a serious challenge. A big part of the problem is fi guring out how to make a game that will work on a wide range of hardware and operating systems. This is where Haxe comes in. Over the course of this book, we'll look at getting started with Haxe and the HaxeFlixel game engine, build a side-scrolling shooter game that covers the core features you need to know, and prepare the game for deployment to multiple platforms. After completing this book, you will have the skills you need to start producing your own cross-platform Haxe-driven games! What this book covers Chapter 1, Getting Started, explains setting up the Haxe and HaxeFlixel development environment and doing a quick Hello World example to ensure that everything is working.
    [Show full text]
  • Attacking Client-Side JIT Compilers.Key
    Attacking Client-Side JIT Compilers Samuel Groß (@5aelo) !1 A JavaScript Engine Parser JIT Compiler Interpreter Runtime Garbage Collector !2 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !3 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !4 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !5 A JavaScript Engine • Parser: entrypoint for script execution, usually emits custom Parser bytecode JIT Compiler • Bytecode then consumed by interpreter or JIT compiler • Executing code interacts with the Interpreter runtime which defines the Runtime representation of various data structures, provides builtin functions and objects, etc. Garbage • Garbage collector required to Collector deallocate memory !6 Agenda 1. Background: Runtime Parser • Object representation and Builtins JIT Compiler 2. JIT Compiler Internals • Problem: missing type information • Solution: "speculative" JIT Interpreter 3.
    [Show full text]
  • Download the Specification
    Internationalizing and Localizing Applications in Oracle Solaris Part No: E61053 November 2020 Internationalizing and Localizing Applications in Oracle Solaris Part No: E61053 Copyright © 2014, 2020, Oracle and/or its affiliates. License Restrictions Warranty/Consequential Damages Disclaimer This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. Warranty Disclaimer The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Restricted Rights Notice If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
    [Show full text]
  • Potranslator Documentation Release 1.1.5
    potranslator Documentation Release 1.1.5 SekouD Nov 01, 2018 Contents 1 potranslator 3 1.1 Supported Languages..........................................3 1.2 Quick Start for auto-translation with potranslator............................6 1.3 Basic Features..............................................7 1.4 Optional features.............................................7 1.5 Installation................................................8 1.6 Commands, options, environment variables...............................8 1.7 License..................................................9 1.8 Original..................................................9 1.9 CHANGES................................................9 2 Installation 11 2.1 Stable release............................................... 11 2.2 From sources............................................... 11 3 Usage 13 3.1 From a Python program......................................... 13 3.2 Commands, options, environment variables............................... 13 4 Package Api Documentation for potranslator 17 4.1 API Reference for the classes in potranslator.potranslator.py...................... 17 5 Contributing 19 5.1 Types of Contributions.......................................... 19 5.2 Get Started!................................................ 20 5.3 Pull Request Guidelines......................................... 21 5.4 Tips.................................................... 21 5.5 Deploying................................................ 21 6 Credits 23 6.1 Development Lead...........................................
    [Show full text]
  • CS153: Compilers Lecture 19: Optimization
    CS153: Compilers Lecture 19: Optimization Stephen Chong https://www.seas.harvard.edu/courses/cs153 Contains content from lecture notes by Steve Zdancewic and Greg Morrisett Announcements •HW5: Oat v.2 out •Due in 2 weeks •HW6 will be released next week •Implementing optimizations! (and more) Stephen Chong, Harvard University 2 Today •Optimizations •Safety •Constant folding •Algebraic simplification • Strength reduction •Constant propagation •Copy propagation •Dead code elimination •Inlining and specialization • Recursive function inlining •Tail call elimination •Common subexpression elimination Stephen Chong, Harvard University 3 Optimizations •The code generated by our OAT compiler so far is pretty inefficient. •Lots of redundant moves. •Lots of unnecessary arithmetic instructions. •Consider this OAT program: int foo(int w) { var x = 3 + 5; var y = x * w; var z = y - 0; return z * 4; } Stephen Chong, Harvard University 4 Unoptimized vs. Optimized Output .globl _foo _foo: •Hand optimized code: pushl %ebp movl %esp, %ebp _foo: subl $64, %esp shlq $5, %rdi __fresh2: movq %rdi, %rax leal -64(%ebp), %eax ret movl %eax, -48(%ebp) movl 8(%ebp), %eax •Function foo may be movl %eax, %ecx movl -48(%ebp), %eax inlined by the compiler, movl %ecx, (%eax) movl $3, %eax so it can be implemented movl %eax, -44(%ebp) movl $5, %eax by just one instruction! movl %eax, %ecx addl %ecx, -44(%ebp) leal -60(%ebp), %eax movl %eax, -40(%ebp) movl -44(%ebp), %eax Stephen Chong,movl Harvard %eax,University %ecx 5 Why do we need optimizations? •To help programmers… •They write modular, clean, high-level programs •Compiler generates efficient, high-performance assembly •Programmers don’t write optimal code •High-level languages make avoiding redundant computation inconvenient or impossible •e.g.
    [Show full text]
  • Quaxe, Infinity and Beyond
    Quaxe, infinity and beyond Daniel Glazman — WWX 2015 /usr/bin/whoami Primary architect and developer of the leading Web and Ebook editors Nvu and BlueGriffon Former member of the Netscape CSS and Editor engineering teams Involved in Internet and Web Standards since 1990 Currently co-chair of CSS Working Group at W3C New-comer in the Haxe ecosystem Desktop Frameworks Visual Studio (Windows only) Xcode (OS X only) Qt wxWidgets XUL Adobe Air Mobile Frameworks Adobe PhoneGap/Air Xcode (iOS only) Qt Mobile AppCelerator Visual Studio Two solutions but many issues Fragmentation desktop/mobile Heavy runtimes Can’t easily reuse existing c++ libraries Complex to have native-like UI Qt/QtMobile still require c++ Qt’s QML is a weak and convoluted UI language Haxe 9 years success of Multiplatform OSS language Strong affinity to gaming Wide and vibrant community Some press recognition Dead code elimination Compiles to native on all But no native GUI… platforms through c++ and java Best of all worlds Haxe + Qt/QtMobile Multiplatform Native apps, native performance through c++/Java C++/Java lib reusability Introducing Quaxe Native apps w/o c++ complexity Highly dynamic applications on desktop and mobile Native-like UI through Qt HTML5-based UI, CSS-based styling Benefits from Haxe and Qt communities Going from HTML5 to native GUI completeness DOM dynamism in native UI var b: Element = document.getElementById("thirdButton"); var t: Element = document.createElement("input"); t.setAttribute("type", "text"); t.setAttribute("value", "a text field"); b.parentNode.insertBefore(t,
    [Show full text]
  • Full Stack Developer, Javascript Hacker
    Full Stack Developer, Javascript Hacker Our vision We believe in ad supported content. But digital advertising has gone too far and users are reacting to legitimate threats around privacy, data usage, and at times, the unreasonably high exposure to ads. Secret Media provides publishers and advertisers with a sustainable solution to monetize and reach ad-blocked traffic, in respect with users privacy and browsing experience. By helping premium publishers manage the rise of adblocking, we help 3 billion internet users to access free information and we help journalists maintain their independence. We have been funded by the best French serial entrepreneurs and our headquarters are in ​ NYC, with an office for the tech team in Paris. We are open to remote (in French or English), our tools and development process are ready for this as we already have one developer working remotely and coming to Paris offices twice a month. We’re looking for a well-rounded and passionate full stack developer with a capacity to hack the ad tech industry. If you’re interested in working on all layers of a complex system from developing systems to intercept and encrypt calls on the client side to creating flexible and scalable proxy architectures transforming the JS scripts on the fly then Secret Media is for you! You will contribute to an environment that enables you to do your best engineering work, and you’ll do it with new web standards and frameworks like Haxe, Javascript (all flavors), Node.js, ​ ​ ElasticSearch and many CI tools. We encourage automation of tests, builds, deploys and analytics for feedback to continuously improve the product.
    [Show full text]
  • Open Source License and Copyright Information for Gplv3 and Lgplv3
    Open Source License and Copyright Information for GPLv3/LGPLv3 Dell EMC PowerStore Open Source License and Copyright Information for GPLv3/LGPLv3 June 2021 Rev A02 Revisions Revisions Date Description May 2020 Initial release December 2020 Version updates for some licenses, and addition and deletion of other components June, 2021 Version updates for some licenses, and addition and deletion of other components The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any software described in this publication requires an applicable software license. Copyright © 2020-2021 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. [6/1/2021] [Open Source License and Copyright Information for GPLv3/LGPLv3] [Rev A02] 2 Dell EMC PowerStore: Open Source License and Copyright Information for GPLv3/LGPLv3 Table of contents Table of contents Revisions............................................................................................................................................................................. 2 Table of contents ...............................................................................................................................................................
    [Show full text]
  • Cross-Platform Language Design
    Cross-Platform Language Design THIS IS A TEMPORARY TITLE PAGE It will be replaced for the final print by a version provided by the service academique. Thèse n. 1234 2011 présentée le 11 Juin 2018 à la Faculté Informatique et Communications Laboratoire de Méthodes de Programmation 1 programme doctoral en Informatique et Communications École Polytechnique Fédérale de Lausanne pour l’obtention du grade de Docteur ès Sciences par Sébastien Doeraene acceptée sur proposition du jury: Prof James Larus, président du jury Prof Martin Odersky, directeur de thèse Prof Edouard Bugnion, rapporteur Dr Andreas Rossberg, rapporteur Prof Peter Van Roy, rapporteur Lausanne, EPFL, 2018 It is better to repent a sin than regret the loss of a pleasure. — Oscar Wilde Acknowledgments Although there is only one name written in a large font on the front page, there are many people without which this thesis would never have happened, or would not have been quite the same. Five years is a long time, during which I had the privilege to work, discuss, sing, learn and have fun with many people. I am afraid to make a list, for I am sure I will forget some. Nevertheless, I will try my best. First, I would like to thank my advisor, Martin Odersky, for giving me the opportunity to fulfill a dream, that of being part of the design and development team of my favorite programming language. Many thanks for letting me explore the design of Scala.js in my own way, while at the same time always being there when I needed him.
    [Show full text]
  • BATIK DIGITAL” (The “Initiative”)
    1. Title. This initiative is known as “Digital Content Technology Infrastructure Support Programme “BATIK DIGITAL” (the “Initiative”). 2. Objectives. Key objectives of the Initiative are as follows: a) To ensure Digital Creative Content companies business continuity by leveraging latest technology in operating business and seize economic opportunities; b) To encourage Digital Creative Content companies investing additional resources in maintaining effectiveness and credibility in securing jobs and maintaining the current workforces; c) To support Digital Creative Content companies in maintaining content production quality, data security and consistency of deliverables despite working away from their studio; and d) To establish sustainability of creative technology ecosystem and might minimise the gap among industry player for them to move forward in the economy value chain. 3. Scope of Incentive The Incentive is to reimburse the cost incurred by the approved Applicant (“Recipient”) for purchasing one or more of the software or technology solution listed in Paragraph 7.0 below for the following purposes: a) Financial support for active digital creative content studios based on company size; and/or b) New / additional / renewal design / development / communication software subscription related to digital creative content activities. 4. Incentive Amount. Incentive amount based on number of employee category limit: a) Category A: 5 – 30 employees; Up to RM 10,000 b) Category B: 31 – 100 employees; Up to RM 20,000 c) Category C: 101 and above employees; Up to RM 40,000 5. Closing Date. The closing date of the Program for ALL categories are as follows: Batch 1 Batch 2 Batch 3 15 April 202 @ 6.00pm 30 April 2021 @ 6.00pm 25 May 2021 @ 6.00pm 6.
    [Show full text]