Life History, Growth, and Genetic Diversity of the Spotted Gar Lepisosteus Oculatus from Peripheral and Core Populations by Solomon R

Total Page:16

File Type:pdf, Size:1020Kb

Life History, Growth, and Genetic Diversity of the Spotted Gar Lepisosteus Oculatus from Peripheral and Core Populations by Solomon R Life history, growth, and genetic diversity of the spotted gar Lepisosteus oculatus from peripheral and core populations by Solomon R. David A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Natural Resources and Environment) in The University of Michigan 2012 Doctoral Committee: Professor Michael J. Wiley, Chair Professor James S. Diana Professor Barry M. OConnor Adjunct Associate Research Scientist Edward S. Rutherford Spotted Gar illustration by Solomon R. David, age 12 © Solomon R. David 2012 To my parents and sisters Ignatius and Esther, Rachel and Sarah Without their love and support I would not have made it this far To my grandparents Rangappa and Wazirbai Yesudas, Jambiah and Kanthamma David For inspiring me to learn more about the natural world around us ii Acknowledgements Funding and material support for this study were provided by the University of Michigan (School of Natural Resources and Environment, Rackham Graduate School, Museum of Zoology), the Michigan Department of Natural Resources Institute for Fisheries Research, NOAA Great Lakes Environmental Research Laboratory, USGS Great Lakes Science Center, Nicholls State University, University of Windsor, Fish Doctors, and the North American Native Fishes Association. This was truly a collaborative effort and I am grateful for all the support allowing me the opportunity to carry out my research. I would like to thank my dissertation committee, Drs. Michael Wiley, James Diana, Edward Rutherford, and Barry OConnor; I have known them all for many years and they have pushed, challenged, supported, and been patient with me exactly as I needed it (realized the most in retrospect) over the course of my doctoral research. I am grateful for their guidance and allowing me to pursue research topics I am most passionate about, and in doing so become a better scientist. Thanks to my dissertation chair Mike Wiley for showing me how to view and explain my research from the “bigger picture” perspective. Thanks to Ed Rutherford for supporting me in so many ways through both my masters and doctoral research, especially in the areas of experimental design and fisheries management. Thanks to my cognate Barry OConnor, for whom I also taught parasitology for a record number of years, it was a privilege to work with him and have his insight on my dissertation research. Special thanks to Jim Diana, who took a chance on bringing me in as one of his (masters) students so many years ago, and again (with Ed and Mike) taking me on as a PhD student. Jim never hesitated to challenge my methods, ideas, and writing, and I am a much better scientist because of it. It was truly a privilege to have all of these great ecologists as advisors, to also consider them friends, and now colleagues. iii I would also like to thank the many scientists, colleagues, and friends who provided support over the course of my doctoral studies; I could not have completed my research without them. Thanks to Kevin Wehrly, Jim Breck, Dave Allan, Lizhu Wang, Doran Mason, Chuck Madenjian, Jeff Schaeffer, Dave Jude, Steve Hensler, Bo Bunnell, Kurt Kowalski, Pete Esselman, Ron Oldfield, Catherine Riseng, Doug Nelson, Dave Brenner, and Gerald Smith for their support and willingness to discuss my research. Thanks to Joe Nohner, James Roberts, Greg Jacobs, Jesse Moore, and Bridget Hohner for their help with field sampling, also known as “garspotting”. Many thanks to Brad Utrup for all his assistance with maintaining gars and field sampling gear at Saline over the years. Special thanks to Madison Schaeffer who served as field and lab assistant and was integral to carrying out my experiments. Greg Hughes and Amy Poopat also provided assistance with experiments. Thanks to Tom Campbell and the staff of Fish Doctors for all their help with resources for my experiments. Jeremy Wright was instrumental in all the molecular analyses, and I am grateful for all his help and the opportunity to collaborate with him. Special thanks to Professor Terry Keiser of Ohio Northern University; also a gar- enthusiast, his ichthyology course was the catalyst for my pursuit of further studies in aquatic ecology. Also many thanks to Barb Diana for all her support and encouragement over the years; she and Jim truly created a sense of family among the aquatics students of SNRE. I thank my students from over the years, I learned a lot from them, and hope they learned (and retained at least a little) about fishes and parasites from me as well. Many thanks to Drs. Allyse Ferrara and Quenton Fontenot of Nicholls State University for their tremendous help and support; they (along with their graduate students Tim Clay, Mark Suchy, Olivia Smith, and Cynthia Fox) provided fish, aging structures, and took me field sampling with them in Louisiana. Thanks also to Bill Glass and Lynda Corkum of University of Windsor, and David Buckmeier of the Texas Parks and Wildlife Department for providing me with additional data and research materials. It was a privilege to meet and work with people who were so enthusiastic about gar research and conservation. I relied on many fellow graduate students and friends for support over the years, and I am grateful for all of them. Fellow SNRE Aquatics students Shaw Lacy, Kyung- iv Seo Park, Yu-Chun Kao, Beth Sparks-Jackson, Ethan Bright, Thomas Neeson, Paul Steen, Lori Ivan, John Molenhouse, Mike Eggleston, Justin Londer, Andy Layman, Emily Chi, Shelly Sawyers, and Miling Li all helped me out over the years. Damon Duquaine, Andrea Walther, and Rakhi Kasat also provided support. Thanks to Emily Nicklett for her support and advice over the years, particularly with grant writing and statistical analyses, but more importantly in surviving the PhD process in general. Thanks to the roommates of “The Tank”, especially fellow founding members James Roberts and Damon Krueger, for all their support over the years and putting up with everything gar-related. Special thanks to Emily Taylor for all her help and support, keeping me sane as I headed down the very challenging home stretch of my dissertation. None of this research would have gotten into the water without the tremendous help and dedication of fellow gar-enthusiast Richard Kik IV. Richard joined me on his days off from work and we trekked throughout the state (and sometimes country) to sample for gars over the years of my dissertation research. I am forever grateful to him for all his help, and am lucky to have met someone as passionate about conservation of these much-maligned fish as I am. I was also privileged to have my best friend, Jeremy Roos, help me with field sampling and rigorous aging structure analyses. I could not have completed my life history analyses without him. Special thanks also to Beau and Eva Harvey for their integral support as I pursued my graduate studies. “Life happens” over the course of one’s graduate career, and I experienced much happiness and faced many challenges during my years in graduate school. Regardless of what came my way, my family was always there to support me, and I am truly blessed because of that. I cannot express it enough, how grateful I am for the love, support, and understanding of my parents, Ignatius and Esther, and my sisters, Rachel and Sarah, over all this time, but hope that I can make them proud. v Table of Contents Dedication………………………………………………………………………………...ii Acknowledgements……………………………………………………………………....iii List of Tables………………………………………………………………………….....vii List of Figures………………………………………………………………………….....ix Abstract…………………………………………………………………………………...xi Chapter 1. Introduction…………………………………………………………………....1 2. Countergradient variation in growth of the spotted gar Lepisosteus oculatus from core and peripheral populations…………………………………………....12 3. Variation in life history patterns of the spotted gar Lepisosteus oculatus from core and peripheral populations………………………………………………….45 4. Genetic variation and biogeography of the spotted gar Lepisosteus oculatus from core and peripheral populations………………………………………......106 5. Conclusion………………………………………………………………......148 vi List of Tables Table 2.1 Mean length (cm) and weight (g) at initiation and completion of experiment 1, along with total growth (Final-Initial), growth rate (cm·day-1, g·day-1), and descriptive statistics for LA and MI populations of spotted gars (N=30 fish per population)…………………35 2.2 Mean length (cm) and weight (g) at initiation and completion of experiment 2, along with total growth (Final-Initial), growth rate (cm·day-1, g·day-1), and descriptive statistics for LA and MI populations of spotted gars at 3 different temperature treatments (N = 6 fish per population in each treatment)…………………………………………………...36 3.1 Comparison of estimated age for 10 MI-p spotted gars collected fall 2008 using 3 aging structures (pectoral rays, branchiostegal rays, otoliths)…………………………...80 3.2 List of spotted gar population data used in life history analyses……………………81 3.3 Descriptive statistics for length (mm) and age (years) entire (overall) sample distributions of spotted gar populations used in life history analyses…………………...83 3.4 Descriptive statistics for length (mm) and age (years) for entire (overall) sample distributions of spotted gar populations used in life history analyses…………………...84 3.5 Matrix of pair-wise ANOVA comparisons for overall mean age and length of peripheral and core populations of spotted gars by sex………………………………….85 3.6 Matrix of pair-wise ANOVA comparisons for overall mean age and length of peripheral and
Recommended publications
  • Fish Inventory at Stones River National Battlefield
    Fish Inventory at Stones River National Battlefield Submitted to: Department of the Interior National Park Service Cumberland Piedmont Network By Dennis Mullen Professor of Biology Department of Biology Middle Tennessee State University Murfreesboro, TN 37132 September 2006 Striped Shiner (Luxilus chrysocephalus) – nuptial male From Lytle Creek at Fortress Rosecrans Photograph by D. Mullen Table of Contents List of Tables……………………………………………………………………….iii List of Figures………………………………………………………………………iv List of Appendices…………………………………………………………………..v Executive Summary…………………………………………………………………1 Introduction…………………………………………………………………...……..2 Methods……………………………………………………………………………...3 Results……………………………………………………………………………….7 Discussion………………………………………………………………………….10 Conclusions………………………………………………………………………...14 Literature Cited…………………………………………………………………….15 ii List of Tables Table1: Location and physical characteristics (during September 2006, and only for the riverine sites) of sample sites for the STRI fish inventory………………………………17 Table 2: Biotic Integrity classes used in assessing fish communities along with general descriptions of their attributes (Karr et al. 1986) ………………………………………18 Table 3: List of fishes potentially occurring in aquatic habitats in and around Stones River National Battlefield………………………………………………………………..19 Table 4: Fish species list (by site) of aquatic habitats at STRI (October 2004 – August 2006). MF = McFadden’s Ford, KP = King Pond, RB = Redoubt Brannan, UP = Unnamed Pond at Redoubt Brannan, LC = Lytle Creek at Fortress Rosecrans……...….22 Table 5: Fish Species Richness estimates for the 3 riverine reaches of STRI and a composite estimate for STRI as a whole…………………………………………………24 Table 6: Index of Biotic Integrity (IBI) scores for three stream reaches at Stones River National Battlefield during August 2005………………………………………………...25 Table 7: Temperature and water chemistry of four of the STRI sample sites for each sampling date…………………………………………………………………………….26 Table 8 : Total length estimates of specific habitat types at each riverine sample site.
    [Show full text]
  • Tennessee Fish Species
    The Angler’s Guide To TennesseeIncluding Aquatic Nuisance SpeciesFish Published by the Tennessee Wildlife Resources Agency Cover photograph Paul Shaw Graphics Designer Raleigh Holtam Thanks to the TWRA Fisheries Staff for their review and contributions to this publication. Special thanks to those that provided pictures for use in this publication. Partial funding of this publication was provided by a grant from the United States Fish & Wildlife Service through the Aquatic Nuisance Species Task Force. Tennessee Wildlife Resources Agency Authorization No. 328898, 58,500 copies, January, 2012. This public document was promulgated at a cost of $.42 per copy. Equal opportunity to participate in and benefit from programs of the Tennessee Wildlife Resources Agency is available to all persons without regard to their race, color, national origin, sex, age, dis- ability, or military service. TWRA is also an equal opportunity/equal access employer. Questions should be directed to TWRA, Human Resources Office, P.O. Box 40747, Nashville, TN 37204, (615) 781-6594 (TDD 781-6691), or to the U.S. Fish and Wildlife Service, Office for Human Resources, 4401 N. Fairfax Dr., Arlington, VA 22203. Contents Introduction ...............................................................................1 About Fish ..................................................................................2 Black Bass ...................................................................................3 Crappie ........................................................................................7
    [Show full text]
  • Characterization of the G Protein-Coupled Receptor Family
    www.nature.com/scientificreports OPEN Characterization of the G protein‑coupled receptor family SREB across fsh evolution Timothy S. Breton1*, William G. B. Sampson1, Benjamin Cliford2, Anyssa M. Phaneuf1, Ilze Smidt3, Tamera True1, Andrew R. Wilcox1, Taylor Lipscomb4,5, Casey Murray4 & Matthew A. DiMaggio4 The SREB (Super‑conserved Receptors Expressed in Brain) family of G protein‑coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identifed, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non‑mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fsh, using comparative genomics and gonadal expression analyses in fve diverse ray‑fnned (Actinopterygii) species across evolution. Several unique characteristics were identifed in fsh, including: (1) a novel, fourth euteleost‑specifc gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression diferences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may refect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in pufer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a.
    [Show full text]
  • Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus Elongatus) in the Lower Wabash River
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications Summer 2020 Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River Dakota S. Radford Eastern Illinois University Follow this and additional works at: https://thekeep.eiu.edu/theses Part of the Aquaculture and Fisheries Commons Recommended Citation Radford, Dakota S., "Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River" (2020). Masters Theses. 4806. https://thekeep.eiu.edu/theses/4806 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. AGING TECHNIQUES & POPULATION DYNAMICS OF BLUE SUCKERS (CYCLEPTUS ELONGATUS) IN THE LOWER WABASH RIVER By Dakota S. Radford B.S. Environmental Biology Eastern Illinois University A thesis prepared for the requirements for the degree of Master of Science Department of Biological Sciences Eastern Illinois University May 2020 TABLE OF CONTENTS Thesis abstract .................................................................................................................... iii Acknowledgements ............................................................................................................ iv List of Tables .......................................................................................................................v
    [Show full text]
  • Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa
    Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa By Jun Cheng A thesis submitted in conformity with the requirements for the degree of Masters of Science Ecology and Evolutionary Biology University of Toronto © Copyright Jun Cheng 2013 Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa Jun Cheng Masters of Science Ecology and Evolutionary Biology University of Toronto 2013 Abstract Area of Occupancy (AO) is a frequently used indicator to assess and inform designation of conservation status to wildlife species by the International Union for Conservation of Nature (IUCN). The applicability of the current grid-based AO measurement on freshwater organisms has been questioned due to the restricted dimensionality of freshwater habitats. I investigated the extent to which AO influenced conservation status for freshwater taxa at a national level in Canada. I then used distribution data of 20 imperiled freshwater fish species of southwestern Ontario to (1) demonstrate biases produced by grid-based AO and (2) develop a biologically relevant AO index. My results showed grid-based AOs were sensitive to spatial scale, grid cell positioning, and number of records, and were subject to inconsistent decision making. Use of the biologically relevant AO changed conservation status for four freshwater fish species and may have important implications on the subsequent conservation practices. ii Acknowledgments I would like to thank many people who have supported and helped me with the production of this Master’s thesis. First is to my supervisor, Dr. Donald Jackson, who was the person that inspired me to study aquatic ecology and conservation biology in the first place, despite my background in environmental toxicology.
    [Show full text]
  • Gar (Lepisosteidae)
    Indiana Division of Fish and Wildlife’s Animal Information Series Gar (Lepisosteidae) Gar species found in Indiana waters: -Longnose Gar (Lepisosteus osseus) -Shortnose Gar (Lepisosteus platostomus) -Spotted Gar (Lepisosteus oculatus) -Alligator Gar* (Atractosteus spatula) *Alligator Gar (Atractosteus spatula) Alligator gar were extirpated in many states due to habitat destruction, but now they have been reintroduced to their old native habitat in the states of Illinois, Missouri, Arkansas, and Kentucky. Because they have been stocked into the Ohio River, there is a possibility that alligator gar are either already in Indiana or will be found here in the future. Alligator gar are one of the largest freshwater fishes of North America and can reach up to 10 feet long and weigh 300 pounds. Alligator gar are passive, solitary fishes that live in large rivers, swamps, bayous, and lakes. They have a short, wide snout and a double row of teeth on the upper jaw. They are ambush predators that eat mainly fish but have also been seen to eat waterfowl. They are not, however, harmful to humans, as they will only attack an animal that they can swallow whole. Photo Credit: Duane Raver, USFWS Other Names -garpike, billy gar -Shortnose gar: shortbill gar, stubnose gar -Longnose gar: needlenose gar, billfish Why are they called gar? The Anglo-Saxon word gar means spear, which describes the fishes’ long spear-like appearance. The genus name Lepisosteus contains the Greek words lepis which means “scale” and osteon which means “bone.” What do they look like? Gar are slender, cylindrical fishes with hard, diamond-shaped and non-overlapping scales.
    [Show full text]
  • The Feeding Habits and Relative Abundances of Bowfin, Spotted Gar, and Largemouth Bass: Can Native Piscivores Control Invasive Common Carp?
    INHS Reports SEPTEMBER 2014 • NO. 412(3) The Feeding Habits and Relative Abundances of Bowfin, Spotted Gar, and Largemouth Bass: Can Native Piscivores Control Invasive Common Carp? The Illinois River is a very productive, health of the Illinois River and other near Hennepin, Illinois experienced floodplain river system; however, its nat- rivers worldwide. Thompson and Flag Common Carp survival after a rotenone ural biological productivity has changed lakes at The Nature Conservancy’s (TNC) application to eradicate them during the through floodplain disconnection, excess Emiquon Preserve serve as one example initial restoration. Due to rapid population nutrient loading, and invasive fish species and have experienced increased Com- growth of Common Carp, Hennepin and introductions. As just one example, Com- mon Carp relative abundances since Hopper lakes experienced major declines mon Carp (Cyprinus carpio) directly and restoration. Management of Common in aquatic macrophyte densities and indirectly degrade aquatic ecosystems Carp is critical for maintaining healthy waterfowl use shortly after restoration. through benthic foraging behaviors. aquatic ecosystems and piscicides, such In addition to a rotenone treatment, as rotenone, are not 100% effective. For biomanipulation of the Largemouth Bass Currently, floodplain restoration efforts example, a floodplain restoration project (Micropterus salmoides) population has are intended to improve the natural known as Hennepin and Hopper Lakes been tested at the Emiquon Preserve and results suggested
    [Show full text]
  • Ecology of the Alligator Gar, Atractosteusspatula, in the Vicente G1;Jerreroreservoir, Tamaulipas, Mexico
    THE SOUTHWESTERNNATURALIST 46(2):151-157 JUNE 2001 ECOLOGY OF THE ALLIGATOR GAR, ATRACTOSTEUSSPATULA, IN THE VICENTE G1;JERRERORESERVOIR, TAMAULIPAS, MEXICO .-., FRANCISCO J. GARCiA DE LEON, LEONARDO GoNzALEZ-GARCiA, JOSE M. HERRERA-CAsTILLO, KIRK O. WINEMILLER,* AND ALFONSO BANDA-VALDES Laboratorio de Biologia lntegrativa, lnstituto Tecnol6gicode Ciudad Victoria, Boulevard Emilio Fortes Gil1301, Ciudad Victoria, CP 87010, Tamaulipas, Mexico (F]GL, LGG,]MHC) Department of Wildlife and FisheriesSciences, Texas A&M University, CollegeStation, TX 77843-2258 (KO~ Direcci6n Generalde Pescadel Gobiernodel Estado de Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico (ABV) * Correspondent:[email protected] ABsTRACf-We provide the first ecological account of the alligator gar, Atractosteusspatula, in the Vicente Guerrero Reservoir, Tamaulipas, Mexico. During March to September, 1998, the local fishery cooperative captured more than 23,000 kg of alligator gar from the reservoir. A random sample of their catch was dominated by males, which were significantly smaller than females. Males and females had similar weight-length relationships. Relative testicular weight varied little season- ally, but relative ovarian weight showed a strong seasonal pattern that indicated peak spawning activity during July and August. Body condition of both sexes also varied in a pattern consistent with late summer spawning. Fishing for alligator gar virtually ceased from October to February, when nonreproductive individuals were presumed to move offshore to deeper water. Alligator gar fed primarily on largemouth bass, Micropterus salmoides,and less frequently on other fishes. The gillnet fishery for alligator gar in the reservoir appears to be based primarily on individuals that move into shallow, shoreline areas to spawn. Males probably remain in these habitats longer than females.
    [Show full text]
  • Life History and Status of Alligator Gar Atractosteus Spatula, with Recommendations for Management
    Life History and Status of Alligator Gar Atractosteus spatula, with Recommendations for Management Prepared by: David L. Buckmeier Heart of the Hills Fisheries Science Center Texas Parks and Wildlife Department, Inland Fisheries Division 5103 Junction Highway Mountain Home, TX 78058 July 31, 2008 Alligator gar Atractosteus spatula is the largest freshwater fish in Texas and one of the largest species in North America, yet has received little attention from anglers or fisheries managers. Although gars (family Lepisosteidae) have long been considered a threat to sport fishes in the United States (summarized by Scarnecchia 1992), attitudes are changing. Recreational fisheries for alligator gar are increasing, and anglers from around the world now travel to Texas for the opportunity to catch a trophy. Because little data exist, it is unknown how current exploitation is affecting size structure and abundance of alligator gar in Texas. In many areas, alligator gar populations are declining (Robinson and Buchanan 1988; Etnier and Starnes 1993; Pflieger 1997; Ferrara 2001). Concerns by biologists and anglers about alligator gar populations in Texas have led the Texas Parks and Wildlife Department (TPWD) to consider management options for this species. In addition to this review, the TPWD has recently initiated several studies to learn more about Texas alligator gar populations. The purposes of this document are to 1) summarize alligator gar life history and ecology, 2) assess alligator gar status and management activities throughout their range, and 3) make recommendations for future alligator gar management in Texas. Life History In the United States, alligator gar spawn from April through June (Etnier and Starnes 1993; Ferrara 2001), coinciding with seasonal flooding of bottomland swamps (Suttkus 1963).
    [Show full text]
  • Advances in Conservation and Management of the Alligator Gar: a Synthesis of Current Knowledge and Introduction to a Special Section
    North American Journal of Fisheries Management © 2019 American Fisheries Society ISSN: 0275-5947 print / 1548-8675 online DOI: 10.1002/nafm.10369 SPECIAL SECTION: ALLIGATOR GAR Advances in Conservation and Management of the Alligator Gar: a Synthesis of Current Knowledge and Introduction to a Special Section N. G. Smith* and D. J. Daugherty Texas Parks and Wildlife Department, Inland Fisheries Division, Heart of the Hills Fisheries Science Center, 5103 Junction Highway, Mountain Home, Texas 78058, USA E. L. Brinkman Arkansas Game and Fish Commission, District 7, 7004 Highway 67 East, Hope, Arkansas 71801, USA M. G. Wegener Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 8384 Fish Hatchery Road, Holt, Florida 32564, USA B. R. Kreiser School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Number 5018, Hattiesburg, Mississippi 39406, USA A. M. Ferrara Department of Biological Sciences, Nicholls State University, Post Office Box 2021, Thibodaux, Louisiana 70310, USA K. D. Kimmel U.S. Fish and Wildlife Service, Baton Rouge Fish and Wildlife Conservation Office, 235 Parker Coliseum, Louisiana State University, Baton Rouge, Louisiana 70803, USA S. R. David Department of Biological Sciences, Nicholls State University, Post Office Box 2021, Thibodaux, Louisiana 70310, USA Abstract Growing appreciation of biodiversity and the role of apex predators, along with the increasing popularity of multi- species and trophy-oriented angling, has elevated the status of gars—in particular, the Alligator Gar Atractosteus spatula—among anglers and biologists alike. As a result, considerable effort has been spent in recent years to gain a working knowledge of the biology and ecology of the species in order to advance science-based management.
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • Hans-Peter Schultze, a Great Paleoichthyologist for Whom Work Is Synonymous with Enjoyment
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 5-17 10.11.2002 Hans-Peter Schultze, a great paleoichthyologist for whom work is synonymous with enjoyment Richard Cloutierl With 4 figures and 2 tables In the summer of 1982, Hans-Peter Schultze and above all by his simplicity and friendliness. Two Gloria Arratia were invited to a small museum years later I started my PbD. at The University located on a fossiliferous site of the Devonian of Kansas, under the supervision of Hans-Peter. Escuminac Formation in Miguasha, Quebec, Compared to his long career, these two weeks eastern Canada. Hans-Peter was to work with that Hans-Peter spent in Miguasha represent an Marius Arsenault, the director of the Miguasha extremely short period of time. Some might say Museum, on the skull of the elpistostegalid EZ- that this little anecdote is insignificant when in- pistostege watsoni, a species closely related to ba- troducing a vertebrate paleontologist (Fig. ZA) sal tetrapods. In addition, he went through the who published 132 papers and books (a total of collections to describe and measure numerous 2977 published pages) in addition to more than juvenile specimens of the osteolepiform Eusthe- 80 abstracts, book reviews and obituaries. How- nopteron foordi. As expected, these two projects ever, this brief story is representative of Hans- turned out to be important contributions in low- Peter’s personality and contributions. He is a er vertebrate paleontology and systematics: one great scientist with numerous interests in science, on the origin of tetrapods (1985), and the second art, and history. Hans-Peter enjoys digging for one on growth patterns of a Late Devonian fish fossils, looking at fossils and describing fossils, (1984).
    [Show full text]