Bull. CCP, Vol. 2, No 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jaiswal Amit Et Al. IRJP 2011, 2 (11), 58-61
Jaiswal Amit et al. IRJP 2011, 2 (11), 58-61 INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN 2230 – 8407 Available online www.irjponline.com Review Article REVIEW / PHARMACOLOGICAL ACTIVITY OF PLATYCLADUS ORIEANTALIS Jaiswal Amit1*, Kumar Abhinav1, Mishra Deepali2, Kasula Mastanaiah3 1Department Of Pharmacology, RKDF College Of Pharmacy,Bhopal, (M.P.)India 2Department Of Pharmacy, Sir Madanlal Institute Of Pharmacy,Etawah (U.P.)India 3 Department Of Pharmacology, The Erode College Of Pharmacy, Erode, Tamilnadu, India Article Received on: 11/09/11 Revised on: 23/10/11 Approved for publication: 10/11/11 *Email: [email protected] , [email protected] ABSTRACT Platycladus orientalis, also known as Chinese Arborvitae or Biota. It is native to northwestern China and widely naturalized elsewhere in Asia east to Korea and Japan, south to northern India, and west to northern Iran. It is a small, slow growing tree, to 15-20 m tall and 0.5 m trunk diameter (exceptionally to 30 m tall and 2 m diameter in very old trees). The different parts of the plant are traditionally used as a diuretic, anticancer, anticonvulsant, stomachic, antipyretic, analgesic and anthelmintic. However, not many pharmacological reports are available on this important plant product. This review gives a detailed account of the chemical constituents and also reports on the pharmacological activity activities of the oil and extracts of Platycladus orientalis. Keywords: Dry distillation, Phytochemisty, Pharmacological activity, Platycladus orientalis. INTRODUCTION cultivated in Europe since the first half of the 18th century. In cooler Botanical Name : Platycladus orientalis. areas of tropical Africa it has been planted primarily as an Family: Cupressaceae. -
Downloaded from Brill.Com10/02/2021 07:21:54PM Via Free Access 126 IAWA Journal, Vol
IAWA Journal, Vol. 28 (2), 2007: 125-137 WOOD ULTRASTRUCTURE OF ANCIENT BURIED LOGS OF FITZROYA CUPRESSOlDES Maria A. Castro1 and Fidel A. Roig2 SUMMARY The anatomy and ultrastructure of subfossil wood of Fitzroya cup res soides from the late Pleistocene (>50,000 14C years before present) were compared with those of extant F. cupressoides trees from southern Chile, using light microscopy (polarized light and ftuorescence), scanning elec tron microscopy coupled with an energy dispersive X-ray spectroscopy system, and transmission electron microscopy. The ancient wood showed an unchanged gross wood structure, loss of cell wall birefringence, loss of lignin autoftuorescence, and a loss of the original microfibrillar pat tern. The energy dispersive X-ray spectroscopy analysis indicated higher than normal contents of S, Cl, and Na in subfossil wood. Ultrastructural modifications in the cell wall of the subfossil wood could have important implications for further studies involving isotopic and wood anatomical measurements of ancient wood. Key words: Fitzroya cupressoides, Pleistocene subfossil wood, cell wall ultrastructure, TEM, SEM-EDXA analysis, wood anatomy. INTRODUCTION The temperate rain forest of South America has a very rich tree species assemblage with a high level of endemism (Arroyo et al. 1993). One of the natural endemies is Fitzroya cupressoides (Molina) I.M.lohnston (alerce, Cupressaceae), a tree species that grows under a relatively low annual mean temperature and high precipitation in areas ofthe southernAndes ofChile and southwesternArgentina. Tree-ring analysis revealed that Fitzroya is a slow-growing tree and is one of the longest-lived tree species in the world, known to reach up to around 3,500 years of age (Lara & Villalba 1993). -
Cupressus Macrocarpa
Cupressus macrocarpa COMMON NAME Macrocarpa FAMILY Cupressaceae AUTHORITY Cupressus macrocarpa Hartw. ex Gordon FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Trees & Shrubs - Gymnosperms NVS CODE CUPMAC HABITAT Terrestrial. regenerating bush and scrub near planted trees and hedgerows. FEATURES Cupressus macrocarpa. Photographer: Peter de Medium sized tree to about 36 metres. Has distinctive fluted trunk when Lange mature, bark is thick, reddish brown beneath often becoming whitish on the surface. Adult foliage comprises many small dark green scales closely appressed to the branchlets, but not flattened. Juvenile foliage more needle like, and not appressed. Male cones up to about 3 mm long, yellow and knobbly arising on the tips of the branches. Female cone are also terminal, rosette-like at first, becoming a rounded brown cone with 8-14 scales when mature. Usually 10-20 small seeds per cone scale. SIMILAR TAXA The scales closely appressed on mature plants, but stems not becoming flattened separate Cupressus from other conifers. There are several Cupressus species in cultivation in New Zealand but C. macrocarpa is by far the most common, and can be identified by the blunt leaves lacking resin glands, and the shining brown mature cones. FLOWER COLOURS No flowers YEAR NATURALISED 1904 Cupressus macrocarpa. Photographer: Peter de Lange ORIGIN Monterey Peninsula, California, N. America ETYMOLOGY cupressus: Classical name, said to be derived from the Greek kuo ‘to produce’ and pari ‘equal’, alluding to the symmetrical form of the Italian cypress; alternatively the name is derived from an ancient Latin word for box, the wood once being used for coffins. macrocarpa: Large fruit Reason For Introduction Forestry Life Cycle Comments Occasional and scattered cultivation escape in the vicinity of planted trees (Webb et al 1988). -
Cupressus Lusitanica Cupressaceae
Cupressus lusitanica Cupressaceae Mexico, Guatemala Am: Yeferenji-tid Eng: Mexican cypress Ecology Seed The Mexican cypress originates from the Germination rate about 30‑45% in 10‑20 moist mountain forests of Mexico and days. 160,000–290,000 seed per kg. The Central America. After the eucalypts it is right time for collection is when the cones one of the commonest plantation trees in start to turn brown. After collection the Ethiopia. It grows best in Dry, Moist, and cones are dried in the sun until they open. Wet Weyna Dega and Dega agroclimatic The seeds can then be separated from zones. The tree is only moderately drought the cones by shaking on a sieve. Sow in a resistant and requires deep moist soils. seedbed and prick out in pots. Cypress aphid in Ethiopia Treatment: Not necessary. Storage Uses : Seed can be stored for some months but the viability is gradually Firewood, timber (furniture, construction), reduced. poles, posts, shade, ornamental, windbreak, live fence. Management Fast‑growing on good sites, moderate Description on poorer sites. Weeding during early A large evergreen conifer to 35 m with a establishment. Pruning and thinning of straight trunk, generally conical but not trees in woodlots managed for timber regular in shape, branches wide spreading. production, trimming if grown as a live The branchlets grow in many planes and fence. branches hang down. BARK: Red‑brown with vertical grooves, grey with age. Remarks LEAVES: Dull blue‑green, in 4 ranks, Cypress can produce poles after 10 years with spreading pointed tips. CONES: and general‑purpose timber in as little as 20 Male cones like fat tips on branchlets, years. -
Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus). -
Print This Article
Annals of Plant Sciences 7.4 (2018) pp. 2179-2186 Research Article Seed and seedling morphology of two near threatened Indian species: Cryptomeria japonica and Cupressus cashmeriana (Cupressaceae sensu lato) Sonali Ray1* and Nanda Dulal Paria2 1Department of Botany, Surendranath College, 24/2, Mahatma Gandhi Road, Kolkata- 700009., West Bengal, India 2Professor in Botany (retired), Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata- 700019, West Bengal, India. Received: 2/23/2018; Revised: 2/28/2018; Accepted: 3/17/2018 Abstract: Seed and Seedling morphology of two species of Cupressaceae – Cupressus cashmeriana Royle ex Carriéreand Cryptomeria japonica (Thunb. Ex L.f.) D. Don have been studied using light microscope (LM) and scanning electron microscope (SEM). Both the species are categorized as Near Threatened (NT) in IUCN Red List Category (2013). For characterization of seed, different parameters like shape, size, base, apex, surface were considered. For the study of seedlings, the parameters like germination pattern, root, hypocotyl, number of paracotyledons, number and nature of first leaf and subsequent leaves have been characterized. The seed and seedling characters as studied in this investigation are important as taxonomic markers for identification purpose. Keywords: Seedling morphology, identification, Cupressus cashmeriana Royle ex Carriére and Cryptomeria japonica (Thunb. Ex L.f.) D. Don. Introduction Cupressus cashmeriana Royle ex Carriére and phylogenetic studies (Damon et al, 2006), molecular Cryptomeria japonica (Thunb. Ex L.f.) D. Don belong studies (Rushforth, 2003), anatomy (Romàn-Jordàn to family Cupressaceae sensu lato. Cupressus et al., 2016) and palynology (Danti et al., 2010) for cashmeriana Royle ex Carriére is an evergreen tree, Cupressus cashmeriana. -
The Taxonomic Position and the Scientific Name of the Big Tree Known As Sequoia Gigantea
The Taxonomic Position and the Scientific Name of the Big Tree known as Sequoia gigantea HAROLD ST. JOHN and ROBERT W. KRAUSS l FOR NEARLY A CENTURY it has been cus ing psychological document, but its major,ity tomary to classify the big tree as Sequoia gigan vote does not settle either the taxonomy or tea Dcne., placing it in the same genus with the nomenclature of the big tree. No more the only other living species, Sequoia semper does the fact that "the National Park Service, virens (Lamb.) End!., the redwood. Both the which has almost exclusive custodY of this taxonomic placement and the nomenclature tree, has formally adopted the name Sequoia are now at issue. Buchholz (1939: 536) pro gigantea for it" (Dayton, 1943: 210) settle posed that the big tree be considered a dis the question. tinct genus, and he renamed the tree Sequoia The first issue is the generic status of the dendron giganteum (Lind!.) Buchholz. This trees. Though the two species \differ con dassification was not kindly received. Later, spicuously in foliage and in cone structure, to obtain the consensus of the Calif.ornian these differences have long been generally botanists, Dayton (1943: 209-219) sent them considered ofspecific and notofgeneric value. a questionnaire, then reported on and sum Sequoiadendron, when described by Buchholz, marized their replies. Of the 29 answering, was carefully documented, and his tabular 24 preferred the name Sequoia gigantea. Many comparison contains an impressive total of of the passages quoted show that these were combined generic and specific characters for preferences based on old custom or sentiment, his monotypic genus. -
The Following Tree Seedlings Are Available to Order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery
The following tree seedlings are available to order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery: Scientific Name: Common Name: Dibble/ Pot size: Acacia koa……………………… Koa……………………………….. Small Acacia koaia……………………... Koai’a……………………………. Small Araucaria columnaris…………….. Norfolk-island Pine……………… Small Cryptomeria japonica……………. Sugi Pine………………………… Small Cupressus lusitanica……………... Mexican Cypress………………… Small Cupressus macrocarpa…………… Monterey Cypress……………….. Small Cupressus simpervirens………….. Italian Cypress…………………… Medium Eucalyptus deglupta……………… Rainbow Bark……………………. Small Eucalyptus robusta……………….. Swamp Mahogany……………….. Small Metrosideros polymorpha……….. Ohia……………………………… Medium or 3” pot Pinus elliotii……………………… Slash Pine………………………... Small Pinus radiata……………………... Monterey Pine…………………… Small Podocarpus sp……………………. Podocarpus………………………. 3” pot Santalum sp……………………… Sandalwood……………………… Medium or 3” pot Tristania conferta………………… Brush Box………………………... Small Acacia koa (Koa): This large hardwood tree is endemic to the Hawaiian Islands. The tree has exceeded 100 ft in height with basal diameter far beyond 50 inches in old growth stands. The wood is prized for furniture and canoe works. This legume has pods with black seeds for reproduction. The wood has similar properties to that of black walnut. The yellow flowers are borne in dense round heads about 2@ in diameter. Tree growth is best above 800 ft; seems to grow best in the ‘Koa belt’ which is situated at an elevation range between 3,500 - 6,000 ft. It is often found in areas where there is fog in the late afternoons. It should be planted in well- drained fertile soils. Grazing animals relish the Koa foliage, so young seedlings should be protected Acacia koaia (Koaia): Related to the Koa, Koaia is native to Hawaii. The leaves and flowers are much the same as Koa. -
Cypress Species Choice and Minimising the Risk of Canker
GROWING CYPRESSES FOR TIMBER Species choice and minimising the risk of canker Information Note 1 Cypresses have long been a favourite alternative to radiata pine for New Zealand’s farm foresters, small-scale plantation owners, and some large-scale growers. IN GENERAL, CYPRESSES: • Are a versatile species with proven performance both as a timber producer and as a shelter species. • Produce versatile timber of relatively high value (compared with radiata pine) that is very easy to saw and dry, and has many end uses. • Grow best on moderately fertile, well- drained, sheltered sites, but with careful species and genotype (seedlot) selection will perform well on a reasonably wide range of sites. • Produce their best timber on sheltered sites. 18-year old Cupressus macrocarpa. • Produce quality timber even as young trees, unlike radiata pine. • Have a reputation of being prone to canker. However this is chiefly a problem of C. macrocarpa, and Leyland cypresses on warmer and exposed sites. Susceptibility to canker depends on site, species, and within any given species, the seedlot. Some seedlots are more resistant to canker than others of the same species. New more canker- resistant planting stock is becoming available. • Are prone to toppling on fertile sites, especially if poorly drained, and are particularly unstable on water-logged clay soils. • May cause abortion if foliage is eaten by pregnant cattle. Caution is advised. Cattle raised with access to cypresses tend not to eat the foliage. There is an established market for cypress timber based on ‘macrocarpa’ – a species widely planted throughout New Zealand for many decades, both in plantations and in farm shelter plantings. -
Tetraclinis Articulata
Bois et Forêts des Tropiques – ISSN : L-0006-579X Volume 345 – 3e trimestre – octobre 2020 – p. 13-23 DIVERSITÉ GÉNÉTIQUE DE TETRACLINIS ARTICULATA AU MAROC / LE POINT SUR… 13 Genetic diversity of ten Moroccan populations of Tetraclinis articulata as revealed by Inter Simple Sequence Repeat (ISSR) markers Meryem Makkaoui1, 2 Younes Abbas3 Salwa El Antry-Tazi1 Leila Medraoui2 Mohammed Alami2 Selouka Rabani2 Abdelkarim Filali-Maltouf2 1 Forest Research Center Silviculture Department Molecular Biology Laboratory PO Box 763, Rabat Morocco 2 Mohamed V University Faculty of Sciences. Microbiology and Molecular Biology Laboratory PO Box 1014, Rabat Morocco 3 Sultan Moulay Slimane University Polydisciplinary Faculty Polyvalent Laboratory R&D – Mghila PO Box 592, Beni Mellal Morocco Auteur correspondant / Corresponding author: Photo 1. Abdelkarim FILALI-MALTOUF Tetraclinis articulata a thuja in the region of Oulmès at an altitude of 640 m. Photo M. Makkaoui. – [email protected] Doi : 10.19182/bft2020.345.a31927 – Droit d’auteur © 2020, Bois et Forêts des Tropiques – © Cirad – Date de soumission : 15 mars 2019 ; date d’acceptation : 13 mai 2020 ; date de publication : 1er novembre 2020. Citer l’article / To cite the article Makkaoui M., Abbas Y., El Antry-Tazi S., Medraoui L., Alami M., Rabani S., Filali-Maltouf A., 2020. Genetic diversity of ten Moroccan populations of Licence Creative Commons : Tetraclinis articulata as revealed by Inter Simple Sequence Repeat (ISSR) Attribution - 4.0 International. markers. Bois et Forêts des Tropiques, 345 : 13-23. Doi : https://doi. Attribution-4.0 International (CC BY 4.0) org/10.19182/bft2020.345.a31927 Bois et Forêts des Tropiques – ISSN: L-0006-579X Volume 345 – 3rd quarter - October 2020 - p. -
Gene Duplications and Genomic Conflict Underlie Major Pulses of Phenotypic 2 Evolution in Gymnosperms 3 4 Gregory W
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.13.435279; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Gene duplications and genomic conflict underlie major pulses of phenotypic 2 evolution in gymnosperms 3 4 Gregory W. Stull1,2,†, Xiao-Jian Qu3,†, Caroline Parins-Fukuchi4, Ying-Ying Yang1, Jun-Bo 5 Yang2, Zhi-Yun Yang2, Yi Hu5, Hong Ma5, Pamela S. Soltis6, Douglas E. Soltis6,7, De-Zhu Li1,2,*, 6 Stephen A. Smith8,*, Ting-Shuang Yi1,2,*. 7 8 1Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 9 Kunming, Yunnan, China. 10 2CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of 11 Botany, Chinese Academy of Sciences, Kunming, China. 12 3Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, 13 Shandong Normal University, Jinan, Shandong, China. 14 4Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA. 15 5Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, 16 University Park, PA, USA. 17 6Florida Museum of Natural History, University of Florida, Gainesville, FL, USA. 18 7Department of Biology, University of Florida, Gainesville, FL, USA. 19 8Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 20 MI, USA. 21 †Co-first author. 22 *Correspondence to: [email protected]; [email protected]; [email protected]. -
26 Extreme Trees Pub 2020
Publication WSFNR-20-22C April 2020 Extreme Trees: Tallest, Biggest, Oldest Dr. Kim D. Coder, Professor of Tree Biology & Health Care / University Hill Fellow University of Georgia Warnell School of Forestry & Natural Resources Trees have a long relationship with people. They are both utility and amenity. Trees can evoke awe, mysticism, and reverence. Trees represent great public and private values. Trees most noticed and celebrated by people and communities are the one-tenth of one-percent of trees which approach the limits of their maximum size, reach, extent, and age. These singular, historic, culturally significant, and massive extreme trees become symbols and icons of life on Earth, and our role model in environmental stewardship and sustainability. What Is A Tree? Figure 1 is a conglomeration of definitions and concepts about trees from legal and word definitions in North America. For example, 20 percent of all definitions specifically state a tree is a plant. Concentrated in 63% of all descriptors for trees are four terms: plant, woody, single stem, and tall. If broad stem diameter, branching, and perennial growth habit concepts are added, 87% of all the descriptors are represented. At its most basic level, defining a tree is not species based, but is a structural definition. A tree is represented by a type of plant architecture recognizable by non-technical people. The most basic concepts for defining a tree are — a large, tall, woody, perennial plant with a single, unbranched, erect, self-supporting stem holding an elevated and distinct crown of branches, and which is greater than 10 feet in height and greater than 3 inches in diameter.