CENTAURI II User Manual As of SW 3.1.0.73 Orer-No

Total Page:16

File Type:pdf, Size:1020Kb

CENTAURI II User Manual As of SW 3.1.0.73 Orer-No CENTAURI II User Manual SW-Version as 3.1.0.73 MAYAH, CENTAURI, FLASHCAST are registered Trademarks. All other trademarks used are acknowledged with this. CENTAURI II User Manual as of SW 3.1.0.73 Orer-No. CIIUM001 Revision Level 11/2005 (c) Copyright by MAYAH Communications GmbH For copying this manual, even by extract, an explicit written permission of Mayah Communications GmbH is required. 1 Introduction............................................................................................................... 1 1.1 Preface.............................................................................................................. 1 1.2 Setup / Installation............................................................................................. 2 1.3 Scope of Delivery .............................................................................................. 2 1.4 Enviroment and Operating Conditions............................................................... 3 1.5 Connections ...................................................................................................... 3 2 Connection Establishment........................................................................................ 5 2.1 ISDN Connections with the Centauri II .............................................................. 5 2.1.1 FlashCast Technology ............................................................................... 5 2.1.2 How to get a framed ISDN connection to .. ................................................ 6 2.1.2.1 ... another Centauri ............................................................................. 6 2.1.2.2 ... MAYAH SendIt................................................................................ 8 2.1.2.3 ... a CDQPrima/CDQ2000/CDQ2001/Telos Zephyr ............................ 8 2.1.2.4 ... a Telos Xstream............................................................................ 11 2.1.2.5 ... a Musictaxi VP Pro........................................................................ 12 2.1.2.6 ... a Musictaxi VP .............................................................................. 13 2.1.2.7 ... a Glensound G.722 Codec............................................................ 14 2.1.2.8 ... an AETA Hifiscoop/AETA Scoopy/You Com Set 2 ....................... 15 2.1.2.9 ... an AVT Magic ............................................................................... 17 2.1.2.10 ... an AVT Telefon ............................................................................. 19 2.1.2.11 ... a normal telephone ....................................................................... 21 2.1.2.12 ... an APT Codec............................................................................... 22 2.2 IP Connections with the Centauri II ................................................................. 25 2.2.1 How to establish IP connections .............................................................. 25 2.2.1.1 Unicast versus Multicast ................................................................... 25 2.2.1.2 Unicast UDP ..................................................................................... 25 2.2.1.3 Unicast RTP (using Centauri´s and Ganymed) ................................. 26 2.2.1.4 TCP................................................................................................... 28 2.2.1.5 Multicast UDP ................................................................................... 29 2.2.1.6 Multicast RTP.................................................................................... 30 2.2.1.7 HTTP Streaming ............................................................................... 31 2.2.1.8 SDP Streaming ................................................................................. 32 2.2.1.9 SAP Streaming ................................................................................. 34 2.2.1.10 IP Ports ............................................................................................. 36 2.2.1.11 IP Overhead...................................................................................... 37 2.2.1.12 Optimize IP Connections................................................................... 38 2.3 X.21 Connections with the Centauri II ............................................................. 40 i Inhaltsverzeichnis 2.3.1 X.21 versus V.35...................................................................................... 40 2.3.2 X.21/V.35 Clocking................................................................................... 40 2.3.3 DTE versus DCE...................................................................................... 41 2.3.4 Centauri (DTE) to Centauri (DTE) ............................................................ 41 2.3.5 Centauri (DTE) to another X.21/V.35 Codec............................................ 44 2.3.6 Centauri (DCE) to Centauri (DTE) via Crossover Cable .......................... 46 3 Control Elements.................................................................................................... 51 3.1 Elements of the Centauri II Frontpanel Control ............................................... 51 3.1.1 Preface..................................................................................................... 51 3.1.2 Centauri II LEDs....................................................................................... 52 3.1.3 Centauri II Keyboard ................................................................................ 53 3.1.4 Arrow Keys............................................................................................... 54 3.1.5 Numeric Key pad...................................................................................... 54 3.1.6 Centauri II Levelmeter.............................................................................. 55 3.1.7 Centauri II Function Keys (F1-F4) ............................................................ 56 3.1.8 The Frontpanel Menues ........................................................................... 56 3.1.8.1 Mask Display and Key Control .......................................................... 56 3.1.8.2 Menu item CONNECT....................................................................... 57 3.1.8.3 Menu item STATUS .......................................................................... 59 3.1.8.4 Menu item PRESETS........................................................................ 59 3.1.8.5 Menu item SETUP ............................................................................ 64 3.2 Elements of the Centauri II Web Remote ........................................................ 92 3.2.1 Preface..................................................................................................... 92 3.2.1.1 Establishing a browserbased connection.......................................... 92 3.2.1.2 Login ................................................................................................. 92 3.2.2 Web Remote Control................................................................................ 93 3.2.2.1 Web Remote ..................................................................................... 93 3.2.2.2 Main .................................................................................................. 94 3.2.2.3 Settings............................................................................................. 97 3.2.2.4 Expert.............................................................................................. 102 3.2.2.5 Status.............................................................................................. 103 3.2.2.6 Help................................................................................................. 107 3.3 Elements of the Centauri II Windows Remote............................................... 108 3.3.1 Operating Elements ............................................................................... 108 3.3.1.1 Main Window .................................................................................. 108 3.3.1.2 Menu Item FILE .............................................................................. 110 3.3.1.3 Menu Item SETTINGS .................................................................... 115 ii Inhaltsverzeichnis 3.3.1.4 Menu Item EXPERT........................................................................ 140 3.3.1.5 Menu Item STATUS........................................................................ 161 3.3.1.6 Menu Item HELP............................................................................. 169 3.3.2 Appendix ................................................................................................ 171 3.3.2.1 Short Cut Keys................................................................................ 171 3.3.2.2 Helpful Readme Files...................................................................... 174 3.3.2.3 Windows Registry ........................................................................... 175 3.3.2.4 Super User Password Request....................................................... 181 3.3.2.5 Command line parameters.............................................................. 183 4 Miscellaneous....................................................................................................... 185 4.1 Most frequent ETSI ISDN Error Messages.................................................... 185 4.2 Declaration of Conformity.............................................................................
Recommended publications
  • CENTAURI II Benutzerhandbuch
    CENTAURI II Benutzerhandbuch SW-Version ab 3.1.0.73 MAYAH, CENTAURI, FLASHCAST sind eingetragene Warenzeichen. Alle anderen verwendeten Warenzeichen werden hiermit anerkannt. CENTAURI II Benutzerhandbuch ab SW 3.1.0.73 Bestell-Nr. CIIUM001 Stand 11/2005 (c) Copyright by MAYAH Communications GmbH Die Vervielfältigung des vorliegenden Handbuches, sowie der darin besprochenen Dokumentationen aus dem Internet, auch nur auszugsweise, ist nur mit ausdrücklicher schriftlicher Genehmigung der MAYAH Communications GmbH erlaubt. 1 Einführung ........................................................................................................... 1 1.1 Vorwort......................................................................................................... 1 1.2 Einbau / Installation ...................................................................................... 2 1.3 Lieferumfang ................................................................................................ 2 1.4 Umgebungs- / Betriebsbedingung................................................................ 2 1.5 Anschlüsse................................................................................................... 3 2 Verbindungsaufbau ............................................................................................. 4 2.1 ISDN Verbindungen mit dem Centauri II ...................................................... 4 2.1.1 FlashCast Technologie und Audiocodec Kategorien............................. 4 2.1.2 Wie bekomme ich eine synchronisierte Verbindung
    [Show full text]
  • Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G
    Ann Merchant Boesgaard Publications Merchant, A. E., Bodenheimer, P., and Wallerstein, G. (1965). “The Lithium Isotope Ratio in Two Hyades F Stars.” Ap. J., 142, 790. Merchant, A. E. (1966). “Beryllium in F- and G-Type Dwarfs.” Ap. J., 143, 336. Hodge, P. W., and Merchant, A. E. (1966). “Photometry of SO Galaxies II. The Peculiar Galaxy NGC 128.” Ap. J., 144, 875. Merchant, A. E. (1967). “The Abundance of Lithium in Early M-Type Stars.” Ap. J., 147, 587. Merchant, A. E. (1967). “Measured Equivalent Widths in Early M-Type Stars.” Lick Obs. Bull. No. 595 (Univ. of California Press). Boesgaard, A. M. (1968). “Isotopes of Magnesium in Stellar Atmosphere.” Ap. J., 154, 185. Boesgaard, A. M. (1968). “Observations of Beryllium in Stars.” Highlights of Astron- omy, ed. L. Perek (Dordrecht: D. Reidel), p. 237. Boesgaard, A. M. (1969). “Intensity Variation in Ca Emission in an MS Star.” Pub. A. S. P., 81, 283. Boesgaard, A. M. (1969). “Observational Clues to the Evolution of M Giant Stars.” Pub. A. S. P., 81, 365. Boesgaard, A. M. (1970). “The Lithium Isotope Ratio in δ Sagittae.” Ap. J., 159, 727. Boesgaard, A. M. (1970). “The Ratio of Titanium to Zirconium in Late-Type Stars.” Ap. J., 161, 163. Boesgaard, A. M. (1970). “On the Lithium Content in Late-Type Giants.” Ap. Letters, 5, 145. Boesgaard, A. M. (1970). “Lithium in Heavy-Metal Red Giants.” Ap. J., 161, 1003. Boesgaard, A. M. (1971). “The Lithium Content of Capella.” Ap. J., 167, 511. Boesgaard, A. M. (1973). “Iron Emission Lines in a Orionis.” In Stellar Chromospheres, eds.
    [Show full text]
  • Urania Nr 3/2005
    > /2005 (717) urania 3/tom LXXVI maj—czerwiec mhćirn iVlich jp f f l owiek, który świat nauczył rnier> życe(?) wokóf planetoid Fotome anzytów za pomocą rnaiych Europejskie Obserwatorium Południowe leskopami pomocniczymi (AT) o średnicy a dalej ogromne budynki mieszczące wiel­ (ESO) zbudowało w latach 1988-2002, na 1,8 m, które mogą zajmować 30 różnych kie teleskopy i 2 kopuły teleskopów pomoc­ ściętym wierzchołku góry Cerro Paranal pozycji, będą stanowiły ciągle rozbudowy­ niczych (obecnie są 2 AT, będzie ich 8). (2635 m n.p.m.) na pustyni Atacama w Chi­ wany instrument interferometryczny (VLTI) Na górnym zdjęciu widzimy teleskop „z gó­ le, Bardzo Duży Teleskop (VLT). Składa o bazie sięgającej przeszło 200 m, które­ ry" wraz z okolicznym krajobrazem, toro­ się on z czterech teleskopów o średnicy go rozdzielczość (0,001 sekundy łuku) bę­ wiskami teleskopów AT i drogami kanałów 8,2 m, mogących kierować zebrane świa­ dzie tak wielka, że można by widzieć nim optycznych prowadzących zebrane świa­ tło do wspólnego ogniska. Razem zbierają astronautę na Księżycu. Dolne zdjęcie tło do wspólnego ogniska interferometru one tyle światła, ile zbierałby teleskop przedstawia ogólny, obecny (2005 r.) wi­ oznaczonego gwiazdką. Idea i zasady o średnicy 16 m, a pracując w systemie dok tego obserwatorium. Na pierwszym działania tego instrumentu wywodzą się interferometrycznym, stanowią teleskop planie widzimy torowisko i stanowiska ob­ z odkryć i prac Alberta Michelsona. o średnicy prawie 130 m. Wspomagane te­ serwacyjne dla teleskopów pomocniczych, Zdjęcia ESO U R A N IA - POSTtPY ASTRONOMII 3/2005 Szanowni i Drodzy Czytelnicy, Interferometria, jako technika badawcza, zdobywa coraz szersze pola zastosowań w astronomii.
    [Show full text]
  • Prospects of Detecting the Polarimetric Signature of the Earth-Mass Planet Α Centauri B B with SPHERE/ZIMPOL
    A&A 556, A64 (2013) Astronomy DOI: 10.1051/0004-6361/201321881 & c ESO 2013 Astrophysics Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL J. Milli1,2, D. Mouillet1,D.Mawet2,H.M.Schmid3, A. Bazzon3, J. H. Girard2,K.Dohlen4, and R. Roelfsema3 1 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), University Joseph Fourier, CNRS, BP 53, 38041 Grenoble, France e-mail: [email protected] 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland 4 Laboratoire d’Astrophysique de Marseille (LAM),13388 Marseille, France Received 12 May 2013 / Accepted 4 June 2013 ABSTRACT Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propaga- tion code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument.
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • Desert Skies Since 1954 Spring 2015 Volume LXI, Issue 1
    Tucson Amateur Astronomy Association Observing our Desert Skies since 1954 Spring 2015 Volume LXI, Issue 1 Inside this issue: The Tadpoles in IC410 President’s 2 Letter Outreach 3, 5 New RideShare 7 Program Observing & 8 - 11 Imaging Featured 12, 14 Articles Classifieds 7 Sponsors 7 Contacts 15 Take Note! Science Fair and Book Festival Reports TAAA member Howard Bower photographed IC 410 which is found in Auriga TAAA RideShare Program using a Telescope Engineering Company TEC 140 ED apochromat refractor with Announced a field flattener resulting in f/7.4. This is a narrow band image with 34 exposures in Hydrogen Alpha (30 minutes each), 34 exposures in Oxygen III (binned 2x2 at Jupiter Opposition 2015 15 minutes each), and 34 exposures in Sulphur II (binned 2x2 at 15 minutes each). Report IC410 is a faint emission nebula surrounding the star cluster NGC 1893. At the Constellation of the top left of the nebula are two objects known as “The Tadpoles”. These are likely Season—Centaurus areas of stellar formation. Each tadpole is about 10 light years long. This object is at a distance of about 12,000 light years. © 2013 Howard Bower. Used by New Items in the Classifieds permission. Desert Skies Page 2 Volume LXI, Issue 1 From Our President As I reviewed the March Bulletin it was really heartwarming to see all of the activities in which we are involved. It takes a lot of Our mission is to provide opportunities for members dedication and hard work to put this all together and make it and the public to share the joy and excitement of work..
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Observing Exoplanets
    Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L.
    [Show full text]
  • Australian Sky & Telescope
    TRANSIT MYSTERY Strange sights BINOCULAR TOUR Dive deep into SHOOT THE MOON Take amazing as Mercury crosses the Sun p28 Virgo’s endless pool of galaxies p56 lunar images with your smartphone p38 TEST REPORT Meade’s 25-cm LX600-ACF P62 THE ESSENTIAL MAGAZINE OF ASTRONOMY Lasers and advanced optics are transforming astronomy p20 HOW TO BUY THE RIGHT ASTRO CAMERA p32 p14 ISSUE 93 MAPPING THE BIG BANG’S COSMIC ECHOES $9.50 NZ$9.50 INC GST LPI-GLPI-G LUNAR,LUNAR, PLANETARYPLANETARY IMAGERIMAGER ANDAND GUIDERGUIDER ASTROPHOTOGRAPHY MADE EASY. Let the LPI-G unleash the inner astrophotographer in you. With our solar, lunar and planetary guide camera, experience the universe on a whole new level. 0Image Sensor:'+(* C O LOR 0 Pixel Size / &#*('+ 0Frames per second/Resolution• / • / 0 Image Format: #,+$)!&))'!,# .# 0 Shutter%,*('#(%%#'!"-,,* 0Interface: 0Driver: ASCOM compatible 0GuiderPort: 0Color or Monochrome Models (&#'!-,-&' FEATURED DEALERS: MeadeTelescopes Adelaide Optical Centre | www.adelaideoptical.com.au MeadeInstrument The Binocular and Telescope Shop | www.bintel.com.au MeadeInstruments www.meade.com Sirius Optics | www.sirius-optics.com.au The device to free you from your handbox. With the Stella adapter, you can wirelessly control your GoTo Meade telescope at a distance without being limited by cord length. Paired with our new planetarium app, *StellaAccess, astronomers now have a graphical interface for navigating the night sky. STELLA WI-FI ADAPTER / $#)'$!!+#!+ #$#)'#)$##)$#'&*' / (!-')-$*')!($%)$$+' "!!$#$)(,#%',).( StellaAccess app. Available for use on both phones and tablets. /'$+((()$!'%!#)'*")($'!$)##!'##"$'$*) stars, planets, celestial bodies and more /$,'-),',### -' ($),' /,,,$"$')*!!!()$$"%)!)!($%( STELLA is controlled with Meade’s planetarium app, StellaAccess. Available for purchase for both iOS S and Android systems.
    [Show full text]
  • Stars and Telescopes : a Resource Book for Teachers of Lower School Science
    Edith Cowan University Research Online ECU Publications Pre. 2011 1981 Stars and telescopes : a resource book for teachers of lower school science Clifton L. Smith Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Science and Mathematics Education Commons Smith, C. (1981). Stars and telescopes : a resource book for teachers of lower school science. Nedlands, Australia: Nedlands College of Advanced Education. This Book is posted at Research Online. https://ro.ecu.edu.au/ecuworks/7034 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]