Non-Intrusive, Out-Of-Band and Out-Of-The-Box Systems Monitoring in the Cloud

Total Page:16

File Type:pdf, Size:1020Kb

Non-Intrusive, Out-Of-Band and Out-Of-The-Box Systems Monitoring in the Cloud Non-intrusive, Out-of-band and Out-of-the-box Systems Monitoring in the Cloud Sahil Suneja Canturk Isci Vasanth Bala University of Toronto IBM T.J. Watson Research IBM T.J. Watson Research [email protected] [email protected] [email protected] Eyal de Lara Todd Mummer t University of Toronto IBM T.J. Watson Research [email protected] [email protected] ABSTRACT Categories and Subject Descriptors The dramatic proliferation of virtual machines (VMs) in dat- K.6.4 [Management of Computing and Information acenters and the highly-dynamic and transient nature of VM Systems]: System Management—Centralization/ decentral- provisioning has revolutionized datacenter operations. How- ization; D.4.7 [Operating Systems]: Organization and ever, the management of these environments is still carried Design—Distributed systems;C.5.0[Computer System out using re-purposed versions of traditional agents, origi- Implementation]: General; C.4 [Performance of Sys- nally developed for managing physical systems, or most re- tems]: Design studies cently via newer virtualization-aware alternatives that re- quire guest cooperation and accessibility. We show that these existing approaches are a poor match for monitoring Keywords and managing (virtual) systems in the cloud due to their de- Virtualization; Virtual Machine; Cloud; Data Center; Mon- pendence on guest cooperation and operational health, and itoring; Analytics; Agentless; VMI their growing lifecycle management overheads in the cloud. In this work, we first present Near Field Monitoring (NFM), our non-intrusive, out-of-band cloud monitoring and analyt- 1. INTRODUCTION ics approach that is designed based on cloud operation prin- Cloud computing and virtualization technologies are dra- ciples and to address the limitations of existing techniques. matically changing how IT systems operate. What used NFM decouples system execution from monitoring and ana- to be a relatively static environment, with fixed physical lytics functions by pushing monitoring out of the targets sys- nodes, has quickly transformed into a highly-dynamic en- tems’ scope. By leveraging and extending VM introspection vironment, where (clusters of) virtual machines (VMs) are techniques, our framework provides simple, standard inter- programmatically provisioned, started, replicated, stopped faces to monitor running systems in the cloud that require no and deprovisioned with cloud APIs. VMs have become the guest cooperation or modification, and have minimal effect processes of the cloud OS, with short lifetimes and a rapid on guest execution. By decoupling monitoring and analyt- proliferation trend [24]. ics from target system context, NFM provides “always-on” While the nature of data center operations has changed, monitoring, even when the target system is unresponsive. the management methodology of these (virtual) machines NFM also works “out-of-the-box” for any cloud instance as has not adapted appropriately. Tasks, such as performance it eliminates any need for installing and maintaining agents monitoring, compliance and security scans, and product dis- or hooks in the monitored systems. We describe the end-to- covery amongst others are carried out using re-purposed ver- end implementation of our framework with two real-system sions of tools originally developed for managing physical sys- prototypes based on two virtualization platforms. We dis- tems or via newer virtualization-aware alternatives that re- cuss the new cloud analytics opportunities enabled by our quire guest cooperation and accessibility. These approaches decoupled execution, monitoring and analytics architecture. require a communication channel, i.e., a hook,intotherun- We present four applications that are built on top of our ning system, or the introduction of a software component, framework and show their use for across-time and across- i.e., an agent,withinthesystemruntime.Therearetwokey system analytics. problems with the existing approaches: First, proliferation of VMs and their ephemeral, short- lived nature, makes the cost of provisioning and maintaining hooks and agents a major pain point. Moreover, the mon- Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed itoring extensions “pollute” the end-user system, intervene for profit or commercial advantage and that copies bear this notice and the full cita- with guest execution, and potentially open up new points of tion on the first page. Copyrights for components of this work owned by others than vulnerability. A recent observation from Amazon Web Ser- ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re- vices [3] highlights how agent operation and maintenance publish, to post on servers or to redistribute to lists, requires prior specific permission issues can impact managed systems. In this case, an incom- and/or a fee. Request permissions from [email protected]. plete maintenance update for DNS configuration in some of SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA. Copyright 2014 ACM 978-1-4503-2789-3/14/06 ...$15.00. the agents, coupled with a memory leak issue led to a per- http://dx.doi.org/10.1145/2591971.2592009 . formance degradation for part of Amazon storage services. This observation drives the first research question we address VM console-like interface enabling administrators to query in our work: How can we perform IT operations (monitor- system state without having to log into guest systems, as ing, compliance, etc.) without relying on guest cooperation well as a handy “time travel” capability for forensic analy- or in-VM hooks? sis of systems, and (iv) a hypervisor-paging aware out-VM Second, existing techniques work only so long as the mon- virus scanner that demonstrates how across-stack knowledge itored systems function properly, and they fail once a system of system state can dramatically improve the operational becomes unresponsive—exactly when such monitoring infor- efficiency of common management applications like virus mation is the most valuable. A recent Google outage [12] scan. Finally, we present a quantitative evaluation showcas- presents a prime example to the effect of this limitation, ing NFM’s high accuracy, monitoring frequency, reliability where a significant portion of Google’s production systems and efficiency, as well as low impact on monitored systems. became unresponsive due to a dynamic loader misconfigu- The rest of the paper is organized as follows. Section ration. As a result of this, none of the in-system agents 2summarizesthetechniquesemployedtodayforenterprise could publish data outside, neither was it possible to log in virtual systems monitoring. Section 3 gives a high level view to the impacted systems for manual diagnosis. Thus,it was of our solution architecture and discusses its benefits over extremely difficult to get system information when it was existing alternatives. Section 4 gives the implementation most crucial. This observation drives our second research details. Section 5 describes the applications we have built to question: How can we monitor and manage systems even demonstrate NFM’s capability. Section 6 evaluates NFM’s when they become unresponsive or are compromised? performance. Section 7 presents related work and Section 8 To address these research challenges, this paper intro- offers our conclusions. duces Near Field Monitoring (NFM), a new approach for system monitoring that leverages virtualization technology 2. EXISTING TECHNIQUES to decouple system monitoring from system context. NFM System monitoring has been a major part of enterprise IT extends VM introspection (VMI) techniques, and combines operations. We categorize the various techniques employed these with a backend cloud analytics platform to perform today as follows: monitoring and management functions without requiring ac- cess into, or cooperation of the target systems. NFM crawls 1. Application-specific in-VM agents for monitoring guest VM memory and disk state in an out-of-band manner from systems. outside the guest’s context, to collect system state which is 2. Application specific hooks for remotely accessing and mon- then fed to the analytics backend. The monitoring functions itoring systems. simply query this systems data, instead of accessing and in- 3. Limited black-box metrics collected by the virtualization truding each running system. In stark contrast with existing layer without guest cooperation. techniques, NFM seamlessly works even when a system be- comes unresponsive (always-on monitoring), and does not 4. General purpose agents or hooks that provide generic in- require the installation and configuration of any hooks or VM information through the virtualization layer. agents in the target system (it works out-of-the-box). Unlike Existing cloud monitoring and management solutions em- the in-VM solutions that run within the guest context and ploy one or more of the above methods to deliver their ser- compete for resources allocated to the guest VMs, NFM is vices. For example, Amazon’s CloudWatch [2] service falls non-intrusive and does not steal guests’ cycles or interfere under the third category in its base operation, while it can be with their actual operation. We believe our approach lays extended by the end users with in-VM data providers (as in the foundation for the right way of systems monitoring in the first category) to provide deeper VM-level information. the cloud; very much like how we monitor processes
Recommended publications
  • Model Driven Scheduling for Virtualized Workloads
    Model Driven Scheduling for Virtualized Workloads Proefschrift voorgelegd op 28 juni 2013 tot het behalen van de graad van Doctor in de Wetenschappen – Informatica, bij de faculteit Wetenschappen, aan de Universiteit Antwerpen. PROMOTOREN: prof. dr. Jan Broeckhove dr. Kurt Vanmechelen Sam Verboven RESEARCH GROUP COMPUTATIONAL MODELINGAND PROGRAMMING Dankwoord Het behalen van een doctoraat is een opdracht die zonder hulp onmogelijk tot een goed einde kan gebracht worden. Gelukkig heb ik de voorbije jaren de kans gekregen om samen te werken met talrijke stimulerende collega’s. Stuk voor stuk hebben zij bijgedragen tot mijn professionele en persoonlijke ontwikkeling. Hun geduldige hulp en steun was essentieel bij het overwinnen van de vele uitdagingen die met een doctoraat gepaard gaan. Graag zou ik hier dan ook enkele woorden van dank neerschrijven. Allereerst zou ik graag prof. dr. Jan Broeckhove en em. prof. dr. Frans Arickx bedanken om mij de kans te geven een gevarieerde en boeiend academisch traject te starten. Bij het beginnen van mijn doctoraat heeft Frans mij niet alleen geholpen om een capabel onderzoeker te worden, ook bij het lesgeven heeft hij mij steeds met raad en daad bijgestaan. Na het emiraat van Frans heeft Jan deze begeleiding overgenomen en er voor gezorgd dat ik het begonnen traject ook succesvol kon beeïndigen. Beiden hebben ze mij steeds grote vrijheid gegeven in mijn zoektocht om interessante onderzoeksvragen te identificeren en beantwoorden. Vervolgens zou ik graag dr. Peter Hellinckx en dr. Kurt Vanmechelen bedanken voor hun persoonlijke en vaak intensieve begeleiding. Zelfs voor de start van mijn academische carrière, bij het schrijven van mijn Master thesis, heeft Peter mij klaar- gestoomd voor een vlotte start als onderzoeker.
    [Show full text]
  • Towards Better Performance Per Watt in Virtual Environments on Asymmetric Single-ISA Multi-Core Systems
    Towards Better Performance Per Watt in Virtual Environments on Asymmetric Single-ISA Multi-core Systems Viren Kumar Alexandra Fedorova Simon Fraser University Simon Fraser University 8888 University Dr 8888 University Dr Vancouver, Canada Vancouver, Canada [email protected] [email protected] ABSTRACT performance per watt than homogeneous multicore proces- Single-ISA heterogeneous multicore architectures promise to sors. As power consumption in data centers becomes a grow- deliver plenty of cores with varying complexity, speed and ing concern [3], deploying ASISA multicore systems is an performance in the near future. Virtualization enables mul- increasingly attractive opportunity. These systems perform tiple operating systems to run concurrently as distinct, in- at their best if application workloads are assigned to het- dependent guest domains, thereby reducing core idle time erogeneous cores in consideration of their runtime proper- and maximizing throughput. This paper seeks to identify a ties [4][13][12][18][24][21]. Therefore, understanding how to heuristic that can aid in intelligently scheduling these vir- schedule data-center workloads on ASISA systems is an im- tualized workloads to maximize performance while reducing portant problem. This paper takes the first step towards power consumption. understanding the properties of data center workloads that determine how they should be scheduled on ASISA multi- We propose that the controlling domain in a Virtual Ma- core processors. Since virtual machine technology is a de chine Monitor or hypervisor is relatively insensitive to changes facto standard for data centers, we study virtual machine in core frequency, and thus scheduling it on a slower core (VM) workloads. saves power while only slightly affecting guest domain per- formance.
    [Show full text]
  • Big Data Benchmarking Workshop Publications
    Benchmarking Datacenter and Big Data Systems Wanling Gao, Zhen Jia, Lei Wang, Yuqing Zhu, Chunjie Luo, Yingjie Shi, Yongqiang He, Shiming Gong, Xiaona Li, Shujie Zhang, Bizhu Qiu, Lixin Zhang, Jianfeng Zhan INSTITUTE OFTECHNOLOGY COMPUTING http://prof.ict.ac.cn/ICTBench 1 Acknowledgements This work is supported by the Chinese 973 project (Grant No.2011CB302502), the Hi- Tech Research and Development (863) Program of China (Grant No.2011AA01A203, No.2013AA01A213), the NSFC project (Grant No.60933003, No.61202075) , the BNSFproject (Grant No.4133081), and Huawei funding. 2/ Big Data Benchmarking Workshop Publications BigDataBench: a Big Data Benchmark Suite from Web Search Engines. Wanling Gao, et al. The Third Workshop on Architectures and Systems for Big Data (ASBD 2013) in conjunction with ISCA 2013. Characterizing Data Analysis Workloads in Data Centers. Zhen Jia, et al. 2013 IEEE International Symposium on Workload Characterization (IISWC-2013) Characterizing OS behavior of Scale-out Data Center Workloads. Chen Zheng et al. Seventh Annual Workshop on the Interaction amongst Virtualization, Operating Systems and Computer Architecture (WIVOSCA 2013). In Conjunction with ISCA 2013.[ Characterization of Real Workloads of Web Search Engines. Huafeng Xi et al. 2011 IEEE International Symposium on Workload Characterization (IISWC-2011). The Implications of Diverse Applications and Scalable Data Sets in Benchmarking Big Data Systems. Zhen Jia et al. Second workshop of big data benchmarking (WBDB 2012 India) & Lecture Note in Computer
    [Show full text]
  • An Experimental Evaluation of Datacenter Workloads on Low-Power Embedded Micro Servers
    An Experimental Evaluation of Datacenter Workloads On Low-Power Embedded Micro Servers Yiran Zhao, Shen Li, Shaohan Hu, Hongwei Wang Shuochao Yao, Huajie Shao, Tarek Abdelzaher Department of Computer Science University of Illinois at Urbana-Champaign fzhao97, shenli3, shu17, hwang172, syao9, hshao5, [email protected] ABSTRACT To reduce datacenter energy cost, power proportional- This paper presents a comprehensive evaluation of an ultra- ity [47] is one major solution studied and pursued by both low power cluster, built upon the Intel Edison based micro academia and industry. Ideally, it allows datacenter power servers. The improved performance and high energy effi- draw to proportionally follow the fluctuating amount of work- ciency of micro servers have driven both academia and in- load, thus saving energy during non-peak hours. However, dustry to explore the possibility of replacing conventional current high-end servers are not energy-proportional and brawny servers with a larger swarm of embedded micro ser- have narrow power spectrum between idling and full uti- vers. Existing attempts mostly focus on mobile-class mi- lization [43], which is far from ideal. Therefore, researchers cro servers, whose capacities are similar to mobile phones. try to improve energy-proportionality using solutions such We, on the other hand, target on sensor-class micro servers, as dynamic provisioning and CPU power scaling. The for- which are originally intended for uses in wearable technolo- mer relies on techniques such as Wake-On-LAN [36] and gies, sensor networks, and Internet-of-Things. Although VM migration [24] to power on/off servers remotely and dy- sensor-class micro servers have much less capacity, they are namically.
    [Show full text]
  • Adaptive Control of Apache Web Server
    Adaptive Control of Apache Web Server Erik Reed Abe Ishihara Ole J. Mengshoel Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University Moffett Field, CA 94035 Moffett Field, CA 94035 Moffett Field, CA 94035 [email protected] [email protected] [email protected] Abstract least load. Typical implementations of load balancing deal with round robin balancing for domain name service Traffic to a Web site can vary dramatically. At the same (DNS) [7]. Much of existing frameworks and previous time it is highly desirable that a Web site is reactive. To research deal with inter-server connections and balanc- provide crisp interaction on thin clients, 150 milliseconds ing, with little or no focus on dynamic parameter adjust- has been suggested as an upper bound on response time. ment of individual servers. Unfortunately, the popular Apache Web server is lim- Focusing on an individual Web server rather than a ited in its capabilities to be reactive under varying traf- cluster of machines, we investigate in this paper an alter- fic. To address this problem, we design in this paper an native approach to ensuring quick and predictable user adaptive controller for the Apache Web server. A modi- response, namely feedback control and specifically Min- fied recursive least squares algorithm is used to identify imum Degree Pole Placement control [5]. This can be in system dynamics and a minimum degree pole placement an environment where inter-server load balancing is al- controller is implemented to adjust the maximum num- ready in place, or when a single server is handling Web ber of concurrent connections.
    [Show full text]
  • Energy Efficiency of Server Virtualization
    Energy Efficiency of Server Virtualization Jukka Kommeri Tapio Niemi Olli Helin Helsinki Institute of Physics, Helsinki Institute of Physics, Helsinki Institute of Physics, Technology program, CERN, Technology program, CERN, Technology program, CERN, CH-1211 Geneva 23, Switzerland CH-1211Geneva 23, Switzerland CH-1211 Geneva 23, Switzerland [email protected] [email protected] [email protected] Abstract—The need for computing power keeps on growing. combine several services into one physical server. In this The rising energy expenses of data centers have made server way, these technologies make it possible to take better consolidation and virtualization important research areas. advantage of hardware resources. Virtualization and its performance have received a lot of attention and several studies can be found on performance. In this study, we focus on energy efficiency of different So far researches have not studied the overall performance virtualization technologies. Our aim is to help the system and energy efficiency of server consolidation. In this paper we administrator to decide how services should be consolidated study the effect of server consolidation on energy efficiency with to minimize energy consumption without violating quality an emphasis on quality of service. We have studied this with of service agreements. several synthetic benchmarks and with realistic server load by performing a large set of measurements. We found out that We studied energy consumption of virtualized servers with energy-efficiency depends on the load of the virtualized service two open source virtualization solutions; KVM and Xen. and the number of virtualized servers. Idle virtual servers do They were tested both under load and idle.
    [Show full text]
  • Remote Profiling of Resource Constraints of Web Servers Using
    Remote Profiling of Resource Constraints of Web Servers Using Mini-Flash Crowds Pratap Ramamurthy Vyas Sekar Aditya Akella Balachander Krishnamurthy UW-Madison CMU UW-Madison AT&T–Labs Research Anees Shaikh IBM Research Abstract often limited, this can be difficult. Hence, large providers Unexpected surges in Web request traffic can exercise who can afford it typically resort to over-provisioning, or server-side resources (e.g., access bandwidth, process- employ techniques such as distributed content delivery or ing, storage etc.) in undesirable ways. Administra- dynamic server provisioning, to minimize the impact of tors today do not have requisite tools to understand the unexpected surges in request traffic. Smaller application impact of such “flash crowds” on their servers. Most providers may trade-off robustness to large variations in Web servers either rely on over-provisioning and admis- workload for a less expensive infrastructure that is provi- sion control, or use potentially expensive solutions like sioned for the expected common case. CDNs, to ensure high availability in the face of flash This approach still leaves operators without a sense crowds. A more fine-grained understanding of the per- of how their application infrastructure will handle large formance of individual server resources under emulated increases in traffic, due to planned events such as annual but realistic and controlled flash crowd-like conditions sales or Web casts, or unexpected flash crowds. While can aid administrators to make more efficient resource these events may not occur frequently, the inability of the management decisions. In this paper, we present mini- infrastructure to maintain reasonably good service, or at flash crowds (MFC) – a light-weight profiling service least degrade gracefully, can lead to significant loss of that reveals resource bottlenecks in a Web server infras- revenue and dissatisfied users.
    [Show full text]
  • Optimal Power Allocation in Server Farms
    Optimal Power Allocation in Server Farms Anshul Gandhi∗ Mor Harchol-Balter∗ Rajarshi Das† Charles Lefurgy†† March 2009 CMU-CS-09-113 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 ∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA †IBM T.J. Watson Research Center, Hawthorne, NY, USA ††IBM Research, Austin, TX, USA Research supported by NSF SMA/PDOS Grant CCR-0615262 and a 2009 IBM Faculty Award. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of NSF or IBM. Keywords: Power Management, Server Farm, Response Time, Power-to-Frequency, Data Center Abstract Server farms today consume more than 1.5% of the total electricity in the U.S. at a cost of nearly $4.5 billion. Given the rising cost of energy, many industries are now looking for solutions on how to best make use of their available power. An important question which arises in this context is how to distribute available power among servers in a server farm so as to get maximum perfor- mance. By giving more power to a server, one can get higher server frequency (speed). Hence it is commonly believed that for a given power budget, performance can be maximized by oper- ating servers at their highest power levels. However, it is also conceivable that one might prefer to run servers at their lowest power levels, which allows more servers for a given power budget. To fully understand the effect of power allocation on performance in a server farm with a fixed power budget, we introduce a queueing theoretic model, which also allows us to predict the opti- mal power allocation in a variety of scenarios.
    [Show full text]
  • Benchmarking Models and Tools for Distributed Web-Server Systems
    Benchmarking Models and Tools for Distributed Web-Server Systems Mauro Andreolini1, Valeria Cardellini1, and Michele Colajanni2 1 Dept. of Computer, Systems and Production University of Roma “Tor Vergata” Roma I-00133, Italy andreolini,cardellini @ing.uniroma2.it, { } 2 Dept. of Information Engineering University of Modena Modena I-41100, Italy [email protected] Abstract. This tutorial reviews benchmarking tools and techniques that can be used to evaluate the performance and scalability of highly accessed Web-server systems. The focus is on design and testing of lo- cally and geographically distributed architectures where the performance evaluation is obtained through workload generators and analyzers in a laboratory environment. The tutorial identifies the qualities and issues of existing tools with respect to the main features that characterize a benchmarking tool (workload representation, load generation, data col- lection, output analysis and report) and their applicability to the analysis of distributed Web-server systems. 1 Introduction The explosive growth in size and usage of the Web is causing enormous strain on users, network service, and content providers.Sophisticated software components have been implemented for the provision of critical services through the Web. Consequently, many research efforts have been directed toward improving the performance of Web-based services through caching and replication solutions.A large variety of novel content delivery architectures, such as distributed Web- server systems, cooperative proxy
    [Show full text]
  • NCA’04) 0-7695-2242-4/04 $ 20.00 IEEE Interesting Proposals
    WALTy: A User Behavior Tailored Tool for Evaluating Web Application Performance G. Ruffo, R. Schifanella, and M. Sereno R. Politi Dipartimento di Informatica CSP Sc.a.r.l. c/o Villa Gualino Universita` degli Studi di Torino Viale Settimio Severo, 65 - 10133 Torino (ITALY) Corso Svizzera, 185 - 10149 Torino (ITALY) Abstract ticular, stressing tools make what-if analysis practical in real systems, because workload intensity can be scaled to In this paper we present WALTy (Web Application Load- analyst hypothesis, i.e., a workload emulating the activity based Testing tool), a set of tools that allows the perfor- of N users with pre-defined behaviors can be replicated, mance analysis of web applications by means of a scalable in order to monitor a set of performance parameters dur- what-if analysis on the test bed. The proposed approach is ing test. Such workload is based on sequences of object- based on a workload characterization generated from infor- requests and/or analytical characterization, but sometimes mation extracted from log files. The workload is generated they are poorly scalable by the analyst; in fact, in many by using of Customer Behavior Model Graphs (CBMG), stressing framework, we can just replicate a (set of) man- that are derived by extracting information from the web ap- ually or randomly generated sessions, losing in objectivity plication log files. In this manner the synthetic workload and representativeness. used to evaluate the web application under test is repre- The main scope of this paper is to present a methodol- sentative of the real traffic that the web application has to ogy based on the generation of a representative traffic.
    [Show full text]
  • Virtual Machine Reset Vulnerabilities and Hedging Deployed Cryptography
    When Good Randomness Goes Bad: Virtual Machine Reset Vulnerabilities and Hedging Deployed Cryptography Thomas Ristenpart Scott Yilek Dept. of Computer Science and Engineering University of California, San Diego, USA {tristenp,syilek}@cs.ucsd.edu Abstract their relevance to RNG failures, the vulnerabilities are also interesting because they introduce a potentially-widespread Random number generators (RNGs) are consistently a class of practical problems due to virtualization technolo- weak link in the secure use of cryptography. Routine cryp- gies. Our second contribution is a general and backwards- tographic operations such as encryption and signing can compatible framework to hedge against the threat of ran- fail spectacularly given predictable or repeated random- domness failures in deployed cryptographic algorithms. We ness, even when using good long-lived key material. This discuss each contribution more in turn. has proved problematic in prior settings when RNG imple- VM reset vulnerabilities. Virtualization technologies en- mentation bugs, poor design, or low-entropy sources have able significant flexibility in handling the state of guest sys- resulted in predictable randomness. We investigate a new tems (an operating system, user applications, and data). In way in which RNGs fail due to reuse of virtual machine particular, virtual machine (VM) snapshots, i.e. copies of (VM) snapshots. We exhibit such VM reset vulnerabilities the state of the guest, can be used to replicate, backup, trans- in widely-used TLS clients and servers: the attacker takes fer (to another physical system), or reset (to a prior state) advantage of (or forces) snapshot replay to compromise the guest. Snapshots are one reason virtualization is trans- sessions or even expose a server’s DSA signing key.
    [Show full text]
  • Phelps AJ T 2020.Pdf (1.937Mb)
    ink - An HTTP Benchmarking Tool Andrew J. Phelps Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Science & Application Godmar V. Back, Chair Ali R. Butt Denis Gracanin May 11, 2020 Blacksburg, Virginia Keywords: Networking, Benchmarking, HTTP, Distributed Systems Copyright 2020, Andrew J. Phelps ink - An HTTP Benchmarking Tool Andrew J. Phelps (ABSTRACT) The Hypertext Transfer Protocol (HTTP) is one the foundations of the modern Internet. Because HTTP servers may be subject to unexpected periods of high load, developers use HTTP benchmarking utilities to simulate the load generated by users. However, many of these tools do not report performance details at a per-client level, which deprives developers of crucial insights into a server’s performance capabilities. In this work, we present ink, an HTTP benchmarking tool that enables developers to better understand server performance. ink provides developers with a way of visualizing the level of service that each individual client receives. It does this by recording a trace of events for each individual simulated client. We also present a GUI that enables users to explore and visualizing the data that is generated by an HTTP benchmark. Lastly, we present a method for running HTTP benchmarks that uses a set of distributed machines to scale up the achievable load on the benchmarked server. We evaluate ink by performing a series of case studies to show that ink is both performant and useful. We validate ink’s load generation abilities within the context of a single machine and when using a set of distributed machines.
    [Show full text]