History of Quantum Scientists Worksheet Key

Total Page:16

File Type:pdf, Size:1020Kb

History of Quantum Scientists Worksheet Key Name:____________KEY__________________Date:_____________________Period:_____ History of Quantum Scientists Worksheet Key Directions Write the name of the scientist along with the major accomplishment he is associated with next to the corresponding date in the timeline on the next page. Each choice is used only once and there are a few scientists not used at all. Robert Millikan 1897 – First credited with the inclusion of the “corpuscle”. 1925 – First to assert that no electron can have the same set of quantum Max Planck numbers at the same instant in time. James Van Allen 1911 – First to propose a planetary model of the atom with a nucleus at Louis Debroglie the center and electrons in orbits around it. 1900 – First to propose that there is a minimum size or quanta in which J.J. Balmer atoms can release or absorb energy. Ernest Rutherford 1926 – First to provide both the wave and particle properties of the Niels Bohr electron in one equation. 1913 – First model that restricts an electron to specific energy levels. Arthur Compton 1924 – First to propose that an orbiting electron has a particular James Chadwick wavelength associated with it. Albert Einstein 1927 – First to assert that it is impossible to know both the exact momentum of an electron and its exact location in space at the same Wolfgang Pauli time. Werner Heisenberg 1904 – First to propose a “Saturnian” model of the atom. James Kirk 1905 – First successful explanation of the photoelectric effect. 1932 – First to prove the existence of the neutron. James Maxwell 1885 – First described the emission spectrum of hydrogen. J.J. Thomson 1923 – First to accurately describe the scattering of x-rays. Erwin Schrodinger 1909 – First successful measurement of the elementary charge of an electron. Hantaro Nagaoka Page 1 of 3 © 2004 High School Technology Initiative (HSTI) Educational Materials: The ATOM: History Name:____________KEY__________________Date:_____________________Period:_____ ---------- History of Physics Review Timeline---------- 1885 J.J. Balmer First described the emission spectrum of hydrogen. 1897 J.J. Thomson First credited with the inclusion of the “corpuscle” 1900 Max Planck First to propose that there is a minimum size quanta in which atoms can absorb or release energy. 1904 Hantaro Nagaoka First to propose a “Saturnian” model of the atom. 1905 Albert Einstein First successful explanation of the photoelectric effect. 1909 Robert Millikan First successful measurement of the elementary charge of an electron. 1911 Ernest Rutherford First to propose a planetary model of the atom with a nucleus at the center and electrons in orbits around it. 1913 Niels Bohr First model that restricts an electron to specific energy levels. 1923 Arthur Compton First to accurately describe the scattering of x-rays. 1924 Louis Debroglie First to propose that an orbiting electron has a particular wavelength associated with it. 1925 Wolfgang Pauli First to assert that no electron can have the same set of quantum numbers at the same time. 1926 Erwin Schrodinger First to provide both the wave and particle properties of the electron in one equation. 1927 Werner Heisenberg First to assert that it is impossible to know both the exact momentum of an electron and its exact location in space at the same time. 1932 James Chadwick First to prove the existence of the neutron. Page 2 of 3 © 2004 High School Technology Initiative (HSTI) Educational Materials: The ATOM: History Name:____________KEY__________________Date:_____________________Period:_____ ---------- History of Physics Review Timeline---------- Extra for experts! 1958 James Van Allen Astronomer that first understood the interaction between the earth’s magnetic field and the energetic particles trapped in it. 1865 James Maxwell First physicist to confirm the relationship between electricity and magnetism. 2245 James T Kirk Captain of the Starship Enterprise NCC1701 and NCC1701a. Page 3 of 3 © 2004 High School Technology Initiative (HSTI) Educational Materials: The ATOM: History .
Recommended publications
  • Harry Truman, the Atomic Bomb and the Apocalyptic Narrative
    Volume 5 | Issue 7 | Article ID 2479 | Jul 12, 2007 The Asia-Pacific Journal | Japan Focus The Decision to Risk the Future: Harry Truman, the Atomic Bomb and the Apocalyptic Narrative Peter J. Kuznick The Decision to Risk the Future: Harry stressed that the future of mankind would be Truman, the Atomic Bomb and theshaped by how such bombs were used and Apocalyptic Narrative subsequently controlled or shared.[3] Truman recalled Stimson “gravely” expressing his Peter J. Kuznick uncertainty about whether the U.S. should ever use the bomb, “because he was afraid it was so I powerful that it could end up destroying the whole world.” Truman admitted that, listening In his personal narrative Atomic Quest, Nobel to Stimson and Groves and reading Groves’s Prize-winning physicist Arthur Holly Compton, accompanying memo, he “felt the same who directed atomic research at the University fear.”[4] of Chicago’s Metallurgical Laboratory during the Second World War, tells of receiving an urgent visit from J. Robert Oppenheimer while vacationing in Michigan during the summer of 1942. Oppenheimer and the brain trust he assembled had just calculated the possibility that an atomic explosion could ignite all the hydrogen in the oceans or the nitrogen in the atmosphere. If such a possibility existed, Compton concluded, “these bombs must never be made.” As Compton said, “Better to accept the slavery of the Nazis than to run a chance of drawing the final curtain on mankind.”[1] Certainly, any reasonable human being could be expected to respond similarly. Three years later, with Hitler dead and the Nazis defeated, President Harry Truman faced Truman and Byrnes en route to Potsdam, July a comparably weighty decision.
    [Show full text]
  • Atomic Physics & Quantum Effects
    KEY CONCEPTS ATOMIC PHYSICS & QUANTUM EFFECTS 1. PHOTONS & THE PHOTOELECTRIC EFFECT Max Planck explained blackbody radiation with his quantum hypothesis, which states that the energy of a thermal oscillator, Eosc, is not continuous, but instead is a discrete quantity given by the equation: Eosc = nhf n = 1, 2, 3,... where f is the frequency and h is a constant now known as Planck’s constant. Albert Einstein extended the idea by adding that all emitted radiation is quantized. He suggested that light is composed of discrete quanta, rather than of waves. According to his theory, each particle of light, known as a photon, has an energy E given by: E = hf Einstein’s theory helped him explain a phenomenon known as the photoelectric effect, in which a photon of light strikes a photosensitive material and causes an electron to be ejected from the material. A photocell constructed from photosensitive material can produce an electrical current when light shines on it. The kinetic energy, K, of a photoelectron displaced by a photon of energy, hf, is given by: K = hf - φ where the work function, φ, is the minimum energy needed to free the electron from the photosensitive material. No photoemission occurs if the frequency of the incident light falls below a certain cutoff frequency – or threshold frequency – given by: φ f0 = h Einstein's theory explained several aspects of the photoelectric effect that could not be explained by classical theory: • The kinetic energy of photoelectrons is dependent on the light’s frequency. • No photoemission occurs for light below a certain threshold frequency.
    [Show full text]
  • Arthur Holly Compton
    Arthur Holly Compton ALSO LISTED IN Physicists ALSO KNOWN AS Arthur Holly Compton FAMOUS AS Nobel Prize Laureate in Physics NATIONALITY American Famous American Men RELIGION Baptist BORN ON 10 September 1892 AD Famous 10th September Birthdays ZODIAC SIGN Virgo Virgo Men BORN IN Wooster, Ohio, USA DIED ON 15 March 1962 AD PLACE OF DEATH Berkeley, California, USA FATHER Elias Compton MOTHER Otelia Catherine SIBLINGS Karl Taylor Compton, Wilson Martindale Compton SPOUSE: Betty Charity McCloskey CHILDREN Arthur Allen Compton, John Joseph Compton EDUCATION University of Cambridge, The College of Wooster, Princeton University DISCOVERIES / INVENTIONS Compton Effect AWARDS: Nobel Prize for Physics (1927) Matteucci Medal (1930) Franklin Medal (1940) Hughes Medal (1940) Arthur Holly Compton was a renowned American physicist who first rose to fame with his famous revolutionary discovery of the Compton Effect for which he also won the Nobel Prize in Physics. This discovery confirmed the dual nature of electromagnetic radiation as both a wave and a particle. Thomson was initially interested in astronomy before he shifted his focus to the study of quantum physics. He started his research in Cavendish Laboratory of Cambridge University and this research led to the discovery of Compton Effect. Later on, during the Second World War, Compton became head of the Manhattan Project’s Metallurgical Laboratory. Manhattan Project developed the first nuclear weapons of the world and Compton played a key role in it. He also served as Chancellor of Washington University in St. Louis. Under his leadership, the University made remarkable academic progress; the university formally desegregated its undergraduate divisions, named its first female full professor, and enrolled a record number of students.
    [Show full text]
  • Research Group of the Committee for the Publication of Hantaro Nagaoka's Biography
    Research Group of the Committee for the Publication of Hantaro Nagaoka's Biography Eri Yagi* The Research Group, whose members are Dr. Kiyonobu Itakura of the Na tional Institute for Education Research, Mr. Tosaku Kimura of the National Science Museum, and myself, has completed a biography of Hantaro Nagaoka, which will be published soon (in Japanese) by the Asahi Newspaper Publisher in Tokyo. The Research Group was organized by the Committee in 1963. It was just after the special exhibition of Nagaoka's science activities, held at the National Science Museum in Tokyo by the support of the History of Science Society of Japan. The Committee has been directed by Professor Yoshio Fujioka, who had learned physics under Nagaoka. Unpublished materials, e.g., Nagaoka's notebooks, diaries, corespondences, photos were generosly donated to the National Science Museum by the family of Nagaoka. In addition, those who had been in contact with Nagaoka kindly con tributed informations to the Research Group. The above materials and informations have been arranged, cataloged, and examined by the Research Group. Hantaro Nagaoka was bom at Nagasaki prefecture in the southern part of Japan in 1865 and died in Tokyo in 1950. He was primarily responsible for pro moting the advancement of physics in Japan, between 1900 and 1925, as a professor at the Department of Physics, the University of Tokyo. In the earlier period before Nagaoka started his researches, such local studies as the properties of Japanese magic mirrors, earthquakes, and geomagnetism had dominated by the influence of foreign teachers in Japan. In addition to the study of atomic structure, Nagaoka covered varied fields in physics as magnetostriction, geophysics, mathematical physics, spectroscopy, and radio waves.
    [Show full text]
  • The Adventures of a Citizen Scientist
    The Adventures of a Citizen Scientist Perhaps one never knows one’s parents, really knows them. You never know their early lives and, as a kid, you’re living inside your own skin, not theirs. After that you’re out of there. Growing up in Chicago, I never knew my dad was famous. He was just a firm, affectionate, if too busy father figure, who loved music and the outdoors, played tennis better than I could, was awfully good with tools, and could explain scientific ideas so well that I almost understood them. I knew he was a physicist and taught at the University, and he and mother often took me on lecture or research trips, but I didn’t know what it was all about. During the war, when he was one of those in charge of the bomb project and we’d moved to Oak Ridge, he was just a hard-working ordinary man doing a job like everybody else. August 6th, 1945, brought a dramatically different perspective, as you might expect. My father was suddenly a national and world figure. That fall, as I went off to college, I began to hear something of his achievements — not only the bomb, but the cosmic ray studies and the Nobel Prize, with all that seemed to entail. At that moment, too, he’d become Chancellor of Washington University in St. Louis, and my college was his college, where his father had been Professor of Philosophy and Psychology and Dean. I was in Wooster, Ohio, the town in which my father had grown up, with his childhood house just down College Avenue.
    [Show full text]
  • Models of the Atom
    David Sang Models of the atom Today we are very familiar with the picture of the atom as a particle with a tiny nucleus at its centre and a cloud of electrons orbiting around the nucleus. But where did this model come from? What were scientists trying to explain using their models of the atom? To find out, we have to go back to the early years of the twentieth century. A model of the atom. But does the nucleus glow like this? No. And are electrons blue? No. Discovering radioactivity and the electron By the 1890s, most physicists were convinced that matter was made up of atoms. The idea of vast In this photo, an electron beam is bent along a circular path by a magnetic field. numbers of tiny, moving particles could explain The beam is produced at the bottom in an ‘electron gun’ and follows a clockwise many things, including the behaviour of gases and path inside the evacuated tube. A small amount of gas has been left in the tube; the differences between the chemical elements. this glows to show up the path of the beam. Then, in 1896, Henri Becquerel discovered radioactivity. He was investigating uranium salts, The importance of these two discoveries was that many of which glow in the dark. To his surprise, he they suggested that atoms were not indestructible. Key words Atoms are tiny but they are made of still smaller found that all the uranium-containing substances model that he tested produced invisible radiation that particles. could blacken photographic paper.
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science
    University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 4 May 17th, 9:00 AM - May 19th, 5:00 PM Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science Joseph Little Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive Part of the Philosophy Commons Little, Joseph, "Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science" (2001). OSSA Conference Archive. 75. https://scholar.uwindsor.ca/ossaarchive/OSSA4/papersandcommentaries/75 This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact [email protected]. Title: Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science1 Author: Joseph Little Response to this paper by: Mark Weinstein © 2001 Joseph Little Introduction Few constructs rest more securely upon the foundation of rhetorical theory than the syllogism. Introduced by Aristotle in the fourth century BC, the syllogism provided Athenian orators with structural guidance for constructing valid, deductive arguments in the polis (Aristotle, 1991, 40; Aristotle, 1984a; Aristotle, 1984b). Yet this guidance is not without qualification: Often neglected in modern times is the fact that valid conclusions, for Aristotle, were only expected to follow necessarily from the premises when the audience was comprised of men acting in accordance with orthos logos, or "right reason" (1984c, 1935-36; 1984d, 1766, 1797, 1798, 1808, 1812, 1819). Also neglected in modern times is the fact that Aristotle thought of "right reason" as a developed ability that "comes to us if growth is allowed to proceed regularly" rather than as an innate aspect of human cognition (1984c, 1939-40).
    [Show full text]
  • Chicago Physics One
    CHICAGO PHYSICS ONE 3:25 P.M. December 02, 1942 “All of us... knew that with the advent of the chain reaction, the world would never be the same again.” former UChicago physicist Samuel K. Allison Physics at the University of Chicago has a remarkable history. From Albert Michelson, appointed by our first president William Rainey Harper as the founding head of the physics department and subsequently the first American to win a Nobel Prize in the sciences, through the mid-20th century work led by Enrico Fermi, and onto the extraordinary work being done in the department today, the department has been a constant source of imagination, discovery, and scientific transformation. In both its research and its education at all levels, the Department of Physics instantiates the highest aspirations and values of the University of Chicago. Robert J. Zimmer President, University of Chicago Welcome to the inaugural issue of Chicago Physics! We are proud to present the first issue of Chicago Physics – an annual newsletter that we hope will keep you connected with the Department of Physics at the University of Chicago. This newsletter will introduce to you some of our students, postdocs and staff as well as new members of our faculty. We will share with you good news about successes and recognition and also convey the sad news about the passing of members of our community. You will learn about the ongoing research activities in the Department and about events that took place in the previous year. We hope that you will become involved in the upcoming events that will be announced.
    [Show full text]
  • Spin-Or, Actually: Spin and Quantum Statistics
    S´eminaire Poincar´eXI (2007) 1 – 50 S´eminaire Poincar´e SPIN OR, ACTUALLY: SPIN AND QUANTUM STATISTICS∗ J¨urg Fr¨ohlich Theoretical Physics ETH Z¨urich and IHES´ † Abstract. The history of the discovery of electron spin and the Pauli principle and the mathematics of spin and quantum statistics are reviewed. Pauli’s theory of the spinning electron and some of its many applications in mathematics and physics are considered in more detail. The role of the fact that the tree-level gyromagnetic factor of the electron has the value ge = 2 in an analysis of stability (and instability) of matter in arbitrary external magnetic fields is highlighted. Radiative corrections and precision measurements of ge are reviewed. The general connection between spin and statistics, the CPT theorem and the theory of braid statistics, relevant in the theory of the quantum Hall effect, are described. “He who is deficient in the art of selection may, by showing nothing but the truth, produce all the effects of the grossest falsehoods. It perpetually happens that one writer tells less truth than another, merely because he tells more ‘truth’.” (T. Macauley, ‘History’, in Essays, Vol. 1, p 387, Sheldon, NY 1860) Dedicated to the memory of M. Fierz, R. Jost, L. Michel and V. Telegdi, teachers, colleagues, friends. arXiv:0801.2724v3 [math-ph] 29 Feb 2008 ∗Notes prepared with efficient help by K. Schnelli and E. Szabo †Louis-Michel visiting professor at IHES´ / email: [email protected] 2 J. Fr¨ohlich S´eminaire Poincar´e Contents 1 Introduction to ‘Spin’ 3 2 The Discovery of Spin and of Pauli’s Exclusion Principle, Historically Speaking 6 2.1 Zeeman, Thomson and others, and the discovery of the electron.......
    [Show full text]
  • Report and Opinion 2016;8(6) 1
    Report and Opinion 2016;8(6) http://www.sciencepub.net/report Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos Manjunath R Independent Researcher #16/1, 8 Th Main Road, Shivanagar, Rajajinagar, Bangalore: 560010, Karnataka, India [email protected], [email protected] “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” : Lord Kelvin Abstract: General public regards science as a beautiful truth. But it is absolutely-absolutely false. Science has fatal limitations. The whole the scientific community is ignorant about it. It is strange that scientists are not raising the issues. Science means truth, and scientists are proponents of the truth. But they are teaching incorrect ideas to children (upcoming scientists) in schools /colleges etc. One who will raise the issue will face unprecedented initial criticism. Anyone can read the book and find out the truth. It is open to everyone. [Manjunath R. Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos. Rep Opinion 2016;8(6):1-81]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj08061601. Keywords: Science; Cosmos; Equations; Dimensions; Creation; Big Bang. “But the creative principle resides in Subaltern notable – built on the work of the great mathematics. In a certain sense, therefore, I hold it astronomers Galileo Galilei, Nicolaus Copernicus true that pure thought can
    [Show full text]
  • James Chadwick and E.S
    What is the Universe Made Of? Atoms - Electrons Nucleus - Nucleons Antiparticles And ... http://www.parentcompany.com/creation_explanation/cx6a.htm What Holds it Together? Gravitational Force Electromagnetic Force Strong Force Weak Force Timeline - Ancient 624-547 B.C. Thales of Miletus - water is the basic substance, knew attractive power of magnets and rubbed amber. 580-500 B.C. Pythagoras - Earth spherical, sought mathematical understanding of universe. 500-428 B.C. Anaxagoras changes in matter due to different orderings of indivisible particles (law of the conservation of matter) 484-424 B.C. Empedocles reduced indivisible particles into four elements: earth, air, fire, and water. 460-370 B.C. Democritus All matter is made of indivisible particles called atoms. 384-322 B.C. Aristotle formalized the gathering of scientific knowledge. 310-230 B.C. Aristarchus describes a cosmology identical to that of Copernicus. 287-212 B.C. Archimedes provided the foundations of hydrostatics. 70-147 AD Ptolemy of Alexandria collected the optical knowledge, theory of planetary motion. 1214-1294 AD Roger Bacon To learn the secrets of nature we must first observe. 1473-1543 AD Nicholaus Copernicus The earth revolves around the sun Timeline – Classical Physics 1564-1642 Galileo Galilei - scientifically deduced theories. 1546-1601, Tycho Brahe accurate celestial data to support Copernican system. 1571-1630, Johannes Kepler. theory of elliptical planetary motion 1642-1727 Sir Isaac Newton laws of mechanics explain motion, gravity . 1773-1829 Thomas Young - the wave theory of light and light interference. 1791-1867 Michael Faraday - the electric motor, and electromagnetic induction, electricity and magnetism are related. electrolysis, conservation of energy.
    [Show full text]