Analgesic and Antiinflammatory Effects of Two Novel Κ-Opioid

Total Page:16

File Type:pdf, Size:1020Kb

Analgesic and Antiinflammatory Effects of Two Novel Κ-Opioid Anesthesiology 2001; 94:1034–44 © 2001 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Analgesic and Antiinflammatory Effects of Two Novel ␬-Opioid Peptides Waltraud Binder, Ph.D.,* Halina Machelska, Ph.D.,* Shaaban Mousa, Ph.D.,* Thomas Schmitt, M.D.,* Pierre J. M. Rivière, Ph.D.,† Jean-Louis Junien, Ph.D.,‡ Christoph Stein, M.D.,§ Michael Schäfer, M.D.ʈ Background: This study investigates two new ␬-agonist tet- mediates specific additional responses. For example, eu- rapeptides, FE 200665 and FE 200666, with high peripheral phoria, physical dependence, and respiratory depression selectivity as a result of poor central nervous system are mainly associated with ␮ and ␦ receptors.1 Spinal, penetration. ␮ Methods: Four days after administration of Freund adjuvant supraspinal, and peripheral -receptors also mediate opi- into the hind paw of male Wistar rats, antinociceptive effects of oid-induced gastrointestinal transit inhibition and consti- intraplantar and subcutaneous injection of FE 200665 and FE pation.3 In contrast, opioids acting at ␬-receptors pro- 200666 were measured by paw pressure algesiometry and com- duce dysphoric rather than euphoric effects, which ␬ ␬ pared with the -agonist U-69,593. Peripheral and -receptor limits their dependence liability and produces little or no selectivity was assessed by the antagonists naloxone methio- ␬ dide (NLXM) and nor-binaltorphimine, respectively. Antiin- respiratory depression. Furthermore, -agonists do not flammatory effects were evaluated by paw volume plethysmom- inhibit intestinal transit or induce constipation. Thus, etry and histologic score. ␬-opioids offer advantages in comparison to ␮-opioids Results: Similar to intraplantar U-69,593, intraplantar FE and are currently being pursued as analgesic agents. ␮ ␮ 200665 (3–100 g) and FE 200666 (1–30 g) resulted in signifi- However, centrally acting ␬-opioids can produce psy- cant and dose-related increases of paw pressure thresholds. 4 Higher doses of FE 200665 (0.2–20 mg) and FE 200666 (0.06– chotomimesis and may be aversive in humans. A poten- 6 mg) were required by subcutaneous route to produce similar tially successful strategy to eliminate the adverse side ef- antinociceptive responses, supporting a peripheral site of ac- fects of ␬-opioids is to restrict the access of these tion. nor-Binaltorphimine dose-dependently antagonized this compounds to the central nervous system, as opioid anal- ␬ effect, implying -opioid selectivity. Analgesic effects of subcu- gesia can also be brought about by the activation of opioid taneous FE 200665 and FE 200666 were abolished by intraplan- tar nor-binaltorphimine, and both subcutaneous and intraplan- receptors on peripheral nerve endings, particularly during 5–7 tar effects were dose-dependently antagonized by subcutaneous inflammatory conditions. Clinical studies have shown NLXM, further demonstrating a peripheral site of action. One to that intraarticular morphine relieves acute postoperative as 6 days after Freund adjuvant inoculation, single and repeated well as chronic arthritic pain.8 The analgesic effect is long- intraplantar injections of FE 200665, FE 200666, and U-69,593 lasting, e.g., up to 2 and 7 days, respectively. This is not significantly reduced paw volume and histologic scores. Both changes were reversed by intraplantar nor-binaltorphimine only explained by an inhibition in pain transmission but 8 and subcutaneous NLXM. also by a local antiinflammatory effect. Conclusion: FE 200665 is a peripherally selective ␬-agonist Previous attempts to design peripherally selective with potent analgesic and antiinflammatory properties that ␬-agonists have not been successful. These attempts may lead to improved analgesic–antiinflammatory therapy were based on small organic molecules. Recently, novel compared with centrally acting opioids or standard nonsteroi- ␬ dal antiinflammatory drugs. and peptidic -ligands were identified by positional scan- ning of a tetrapeptide combinatorial library screened in 9 OPIOID analgesics, despite their side effects, are unsur- opioid receptor radioligand binding assays. These new ␬ passed in the pharmacologic treatment of severe pain. -ligands have an all D-amino acids sequence and show ␬ They exert their diverse physiologic effects through high selectivity for the -receptor. Furthermore, this ␬ ␬ three distinct membrane-bound receptor subtypes—␮, new class of -ligands are potent -agonists in vitro, ␦, and ␬—in the central nervous system1 and in the potent antinociceptive agents in vivo, and peripherally 2 selective, as shown by the lack of sedative activity in the periphery. 10 In addition to analgesia, each opioid receptor subtype mouse rotarod after peripheral administration. How- ever, these series of new ␬-agonists are short-acting. Chemical optimization has led to the characterization of * Postdoctoral Fellow, § Professor and Chairman, ʈ Associate Professor, Depart- a second generation of tetrapeptide ␬-agonists with high ment of Anesthesiology and Critical Care Medicine, Klinikum Benjamin Franklin, peripheral selectivity and long duration of action.10 In Freie Universität Berlin. † Head of Biology, Ferring Research Institute Inc. ‡ Chief Scientific Officer, Ferring Pharmaceuticals. the current study we examined two of these novel com- Received from the Department of Anesthesiology and Critical Care Medicine, pounds, FE 200665 and FE 200666, which show high Klinikum Benjamin Franklin, Freie Universität Berlin, Berlin, Germany; Ferring affinity subnanomolar and high selectivity for human Research Institute Inc., San Diego, California; and Ferring Pharmaceuticals, Paris, France. Submitted for publication July 31, 2000. Accepted for publication De- ␬-opioid receptor versus ␮-opiod receptor (up to 90,000- cember 1, 2000. Supported by Ferring Research Institute B.V., Hoofddorp, The fold) or ␦-opiod receptor (85,000-fold).10 The antinoci- Netherlands. Address reprint requests to Dr. Binder: Department of Anesthesiology and ceptive and antiinflammatory properties of these poten- Critical Care Medicine, Benjamin-Franklin University Hospital, Freie Universiät tially peripherally selective ␬-opioid peptides were Berlin, Hindenburgdamm 30, D 12200 Berlin, Germany. Address electronic mail ␬ to: [email protected]. Individual article reprints may be purchased assessed and compared with the standard -opioid through the Journal Web site, www.anesthesiology.org. U-69,593. Anesthesiology, V 94, No 6, Jun 2001 1034 Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/Journals/JASA/931230/ on 07/08/2016 PERIPHERAL OPIOID ANALGESIA AND ANTIINFLAMMATION 1035 Materials and Methods (2) pannus formation (degree of intrusion of granulation tissue into the joint space); and (3) periosteal reaction Induction of Arthritis (extent of new bone formation). A rating scale from 0 to Experiments were conducted in male Wistar rats 8 was used for each variable (i.e., maximum obtainable weighing 250–300 g. Rats were housed individually and score ϭ 24). This procedure was based on the method- kept in a temperature-controlled room (22°C Ϯ 1) with ology originally described by Ackerman et al.11 a 12-h alternating light–dark cycle. To induce inflamma- tion, rats were sedated by brief halothane anesthesia and Drugs received an intraplantar injection of 150 ␮l Freund com- We used the ␬-opioid agonists U-69,593 (Sigma, De- plete adjuvant (FCA; Calbiochem, San Diego, CA) into isenhofen, Bavaria, Germany), FE 200665 and FE 200666 the right hind paw. Experiments and animal care were (Ferring Research, San Diego, CA), and the opioid antag- conducted in accordance with standard ethical guide- onists nor-binaltorphimine (nor-BNI) and naloxone me- lines (Tierschutz komission, Berlin, Germany). thiodide (NLXM; Sigma). All opioid drugs were dissolved in distilled water and administered intraplantarly Nociceptive Thresholds (100 ␮l), subcutaneously into a skin fold in the neck Between 4 and 6 days after induction of inflammation, (200 ␮l), or intrathecally (10 ␮l). Antagonists were given mechanical nociceptive thresholds were assessed using either concomitantly or 5 min before agonist administra- a paw pressure analgesymeter (Ugo Basile, Comerio, tion. Control animals received distilled water. Italy). The paw pressure threshold (PPT) required to elicit hind-paw withdrawal was determined by averaging Implantation of Intrathecal Catheters three consecutive trials separated by 10 s. The sequence Rats were handled and trained in the test situation for of left and right paws was alternated between animals to 3 days before intrathecal catherization. Anesthesia was avoid bias. The experimenter was blind to the conditions induced and maintained with 2% halothane via a loose- used. Data are represented as percent maximum possi- fitting plastic mask. The intrathecal catheters were pre- ble effect (MPE) with an arbitrary cutoff point of 250 g pared according to a method described previously.12 Ϫ and are calculated by the formula: (PPT treated PPT Briefly, a polyethylene tubing (PE-10; Portex, United Ϫ ϫ pretreated/250 PPT pretreated) 100. Kingdom) was cut in 200-mm lengths and inserted 15 mm in a cervical direction, through a previously made Evaluation of Inflammation incision at the L3–L4 level. The animals were allowed 4 Antiinflammatory effects were assessed by monitoring days to recover from anesthesia and surgery. During this paw volume with a plethysmometer (Ugo Basile) and by time, animals showing any sign of neurologic damage histologic examination.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub
    US 2004O224020A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub. Date: Nov. 11, 2004 (54) ORAL DOSAGE FORMS WITH (22) Filed: Dec. 18, 2003 THERAPEUTICALLY ACTIVE AGENTS IN CONTROLLED RELEASE CORES AND Related U.S. Application Data IMMEDIATE RELEASE GELATIN CAPSULE COATS (60) Provisional application No. 60/434,839, filed on Dec. 18, 2002. (76) Inventor: Grant L. Schoenhard, San Carlos, CA (US) Publication Classification Correspondence Address: (51) Int. Cl. ................................................... A61K 9/24 Janet M. McNicholas (52) U.S. Cl. .............................................................. 424/471 McAndrews, Held & Malloy, Ltd. 34th Floor (57) ABSTRACT 500 W. Madison Street Chicago, IL 60661 (US) The present invention relates to oral dosage form with active agents in controlled release cores and in immediate release (21) Appl. No.: 10/742,672 gelatin capsule coats. Patent Application Publication Nov. 11, 2004 Sheet 1 of 3 US 2004/0224020 A1 r N 2.S Hr s Patent Application Publication Nov. 11, 2004 Sheet 2 of 3 US 2004/0224020 A1 r CN -8 e N va N . t Cd NOLLYRILNONOO Patent Application Publication Nov. 11, 2004 Sheet 3 of 3 US 2004/0224020 A1 US 2004/0224020 A1 Nov. 11, 2004 ORAL DOSAGE FORMS WITH released formulations, a long t is particularly disadvan THERAPEUTICALLY ACTIVE AGENTS IN tageous to patients Seeking urgent treatment and to maintain CONTROLLED RELEASE CORES AND MEC levels. A second difference in the pharmacokinetic IMMEDIATE RELEASE GELATIN CAPSULE profiles of controlled release in comparison to immediate COATS release drug formulations is that the duration of Sustained plasma levels is longer in the controlled release formula CROSS REFERENCED APPLICATIONS tions.
    [Show full text]
  • INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
    INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity.
    [Show full text]
  • Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
    Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs.
    [Show full text]
  • Characterisation and Partial Purification of a Novel Prohormone Processing Enzyme from Ovine Adrenal Medulla
    Volume 246, number 1,2, 44-48 FEB 06940 March 1989 Characterisation and partial purification of a novel prohormone processing enzyme from ovine adrenal medulla N. Tezapsidis and D.C. Parish Biochemistry Group, School of Biological Sciences, University of Sussex, Falmer, Brighton, Sussex, England Received 3 January 1989 An enzymatic activity has been identified which is capable of generating a product chromatographically identical with adrenorphin from the model substrate BAM 12P. This enzyme was purified by gel filtration and ion-exchange chromatog- raphy and characterised as having a molecular mass between 30 and 45 kDa and an acidic pL The enzyme is active at the acid pH expected in the secretory vesicle interior and is inhibited by EDTA, suggesting that it is a metalloprotease. This activity could not be mimicked by incubation with lysosomal fractions and it meets the criteria to be considered as a possible prohormone processing enzyme. Prohormone processing; Adrenorphin; Secretory vesiclepurification 1. INTRODUCTION The purification of an endopeptidase responsi- ble for the generation of adrenorphin was under- Active peptide hormones are released from their taken, using the ovine adrenal medulla as a source. precursors by endoproteolytic cleavage at highly Adrenorphin is known to be located in the adrenal specific sites. The commonest of these is cleavage medulla of all species so far investigated [6]. at pairs of basic residues such as lysine and Secretory vesicles (also known as chromaffin arginine [1,2]. However another common class of granules) were isolated as a preliminary purifica- processing sites are known to be at single arginine tion step, since it is known that prohormone pro- residues, adjacent to a proline [3].
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Dynorphin A Item No. 18169 CAS Registry No.: 80448-90-4 O O Formal Name: dynorphin A HO NH2 HO NH O O NH2 Synonym: Dynorphin A (1-17) O N O H C H N O H O NH MF: 99 155 31 23 N O O H H H N NH FW: 2,147.5 N N 2 N N N H H O O NH O O H H H H N N N ≥95% H2N H2N O Purity: N N NH NH H H O O O NH O H N Stability: ≥2 years at -20°C O N H2N N N H NH2 H H O NH2 Supplied as: A crystalline solid OH UV/Vis.: λmax: 279 nm Laboratory Procedures For long term storage, we suggest that dynorphin A be stored as supplied at -20°C. It should be stable for at least two years. Dynorphin A is supplied as a crystalline solid. A stock solution may be made by dissolving the dynorphin A in the solvent of choice. Dynorphin A is soluble in organic solvents such as DMSO and dimethyl formamide, which should be purged with an inert gas. The solubility of dynorphin A in these solvents is approximately 30 mg/ml. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of dynorphin A can be prepared by directly dissolving the crystalline solid in aqueous buffers.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • From Opiate Pharmacology to Opioid Peptide Physiology
    Upsala J Med Sci 105: 1-16,2000 From Opiate Pharmacology to Opioid Peptide Physiology Lars Terenius Experimental Alcohol and Drug Addiction Section, Department of Clinical Neuroscience, Karolinsku Institutet, S-I71 76 Stockholm, Sweden ABSTRACT This is a personal account of how studies of the pharmacology of opiates led to the discovery of a family of endogenous opioid peptides, also called endorphins. The unique pharmacological activity profile of opiates has an endogenous counterpart in the enkephalins and j3-endorphin, peptides which also are powerful analgesics and euphorigenic agents. The enkephalins not only act on the classic morphine (p-) receptor but also on the 6-receptor, which often co-exists with preceptors and mediates pain relief. Other members of the opioid peptide family are the dynor- phins, acting on the K-receptor earlier defined as precipitating unpleasant central nervous system (CNS) side effects in screening for opiate activity, A related peptide, nociceptin is not an opioid and acts on the separate NOR-receptor. Both dynorphins and nociceptin have modulatory effects on several CNS functions, including memory acquisition, stress and movement. In conclusion, a natural product, morphine and a large number of synthetic organic molecules, useful as drugs, have been found to probe a previously unknown physiologic system. This is a unique develop- ment not only in the neuropeptide field, but in physiology in general. INTRODUCTION Historical background Opiates are indispensible drugs in the pharmacologic armamentarium. No other drug family can relieve intense, deep pain and reduce suffering. Morphine, the prototypic opiate is an alkaloid extracted from the capsules of opium poppy.
    [Show full text]
  • S-1203 Dynorphin a Elisa Dynorphins Are a Class of Opioid Peptides
    BMA BIOMEDICALS Peninsula Laboratories S-1203 Dynorphin A Elisa Dynorphins are a class of opioid peptides. As their precursor Proenkephalin-B is cleaved during processing, its residues 207-223 (Dynorphin A) and 226-238 (Rimorphin, Dynorphin B) are released, among others. Dynorphins contain a high proportion of basic and hydrophobic residues. They are widely distributed in the central nervous system, with highest concentrations in the hypothalamus, medulla, pons, midbrain, and spinal cord, where they are also produced. Dynorphins are stored in large dense-core vesicles characteristic of opioid peptides storage. Dynorphins exert their effects primarily through the κ-opioid receptor (KOR), a G-protein- coupled receptor. They are part of the complex molecular changes in the brain leading to cocaine addiction. Dynorphins are important in maintaining homeostasis through appetite control, circadian rhythms and the regulation of body temperature. However, Dynorphin derivatives are generally considered to be of little clinical use because of their very short duration of action. This ELISA was developed with serum from rabbits immunized with Dynorphin coupled to a carrier protein. TECHNICAL AND ANALYTICAL CHARACTERISTICS Lot number: A18004 Host species: Rabbit IgG Quantity: 96 tests Format: Formulated for extracted samples (EIAH type). Shelf-life: One year from production date. Store refrigerated at 4° - 8°C. Applications: This ELISA has been validated with the included reagents. It is intended to be used with appropriately extracted samples (original protocol III, Std.Ab1hr.Bt). For research use only. Please see www.bma.ch for protocols and general information. Range: 0-5ng/ml Average IC50: 0.09ng/ml Immunogen: Synthetic peptide H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu- Lys-Trp-Asp-Asn-Gln-OH coupled to carrier protein.
    [Show full text]
  • Dynorphin A-( L-L 7) Induces Alterations in Free Fatty Acids, Excitatory Amino Acids, and Motor Function Through an Opiate- Receptor-Mediated Mechanism
    The Journal of Neuroscience, December 1990, IO(1‘2): 37934900 Dynorphin A-( l-l 7) Induces Alterations in Free Fatty Acids, Excitatory Amino Acids, and Motor Function Through An Opiate- Receptor-Mediated Mechanism Rohit Bakshi,’ Amy H. Newman,2 and Alan I. Faden’ ‘Center for Neural Injury, Department of Neurology, University of California, San Francisco, California 94121 and Neurology Service (127), Department of Veterans Affairs, San Francisco, California 94121, and *Department of Applied Biochemistry, Walter Reed Army Institute of Research, Washington, DC. 20307-5100 The endogenous opioid dynorphin A-( l-1 7) (Dyn A) has been Phamacological studies with opioid-receptor antagonists sup- implicated as a mediator of tissue damage after traumatic port the concept that endogenous opioids contribute to the spinal cord injury (TSCI) and causes hindlimb paralysis when pathophysiology of tissue damageafter CNS trauma (Faden et administered intrathecally. Motor impairment following in- al., 1981; Flamm et al., 1982; Hayes et al., 1983; Arias, 1985; trathecal Dyn A is attenuated by antagonists of excitatory Inoue, 1986; McIntosh et al., 1987). Dynorphin A (Dyn A), a amino acids (EAAs); whether opioid receptors mediate such 17-amino acid opioid peptide thought to be an endogenous injury has been questioned. TSCI causes various biochem- ligand for the K-Opiate receptor (Chavkin and Goldstein, 1981; ical changes associated with secondary tissue damage, in- Yoshimura et al., 1982), has been implicated as a secondary cluding alterations in tissue amino acids, phospholipids, and injury factor after spinal cord (Faden et al., 1985) and brain fatty acids. Such changes reflect injury severity and corre- trauma (McIntosh et al., 1987).
    [Show full text]
  • Differential Effects of Novel Kappa Opioid Receptor Antagonists on Dopamine Neurons Using Acute Brain Slice Electrophysiology
    PLOS ONE RESEARCH ARTICLE Differential effects of novel kappa opioid receptor antagonists on dopamine neurons using acute brain slice electrophysiology 1 2 2 2 Elyssa B. MargolisID *, Tanya L. Wallace , Lori Jean Van Orden , William J. Martin 1 Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States of America, 2 BlackThorn Therapeutics, San Francisco, CA, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Activation of the kappa opioid receptor (KOR) contributes to the aversive properties of stress, and modulates key neuronal circuits underlying many neurobehavioral disorders. KOR agonists directly inhibit ventral tegmental area (VTA) dopaminergic neurons, contribut- OPEN ACCESS ing to aversive responses (Margolis et al. 2003, 2006); therefore, selective KOR antagonists Citation: Margolis EB, Wallace TL, Van Orden LJ, represent a novel therapeutic approach to restore circuit function. We used whole cell Martin WJ (2020) Differential effects of novel kappa opioid receptor antagonists on dopamine electrophysiology in acute rat midbrain slices to evaluate pharmacological properties of four neurons using acute brain slice electrophysiology. novel KOR antagonists: BTRX-335140, BTRX-395750, PF-04455242, and JNJ-67953964. PLoS ONE 15(12): e0232864. https://doi.org/ Each compound concentration-dependently reduced the outward current induced by the 10.1371/journal.pone.0232864 KOR selective agonist U-69,593. BTRX-335140 and BTRX-395750 fully blocked U-69,593 Editor: Bradley Taylor, University of Pittsburgh, currents (IC50 = 1.2 ± 0.9 and 1.2 ± 1.3 nM, respectively). JNJ-67953964 showed an IC50 of UNITED STATES 3.0 ± 4.6 nM.
    [Show full text]
  • Adrenoceptor (1) Antibiotic (2) Cyclic Nucleotide (4) Dopamine (5) Hormone (6) Serotonin (8) Other (9) Phosphorylation (7) Ca2+
    Supplementary Fig. 1 Lifespan-extending compounds can show structural similarity or have common substructures. Cl NO2 H doxycycline (2) N N NH 2 O H O H O O H O O O O O H O NH NH Cl O O 2 N N guanfacine (1) O H N N H H H nitrendipine (3) S Cl N H promethazine (9) NO2 F N NH2 F N demeclocycline (2) O H O O H O O F N NH O O H O O Cl S N NH N guanabenz (1) O O 2 fluphenthixol (5) Br CN O H N H N nicardipine (3) S N H Cl O H N N propionylpromazine (5) O O H O H O O H O O O H Cl N S Br LFM−A13 (7) NH2 S S O H H H chlorprothixene (5) thioridazine (5) N N O H minocycline (2) HO S O β-estradiol (6) O H H N H N H O H O danazol (6) N N cyproterone (6) H N H O H O methylergonovine (5) HO H pergolide (5) O N O O O N O HN O O H O N N H 3C H H O O H Cl H O H C H 3 O H N N H N H N H H O metergoline (8) dihydroergocristine (5) Cortexolone (5) HO O N (R,R)−cis−Diethyltetrahydro−2,8−chrysenediol (6) O H O H N O vincristine (9) N H N HN H O H H N H O N N N N O N H O O O N N dihydroergotamine (8) H O Cl O H O H O nortriptyline (1) S O mianserin (8) octoclothepin (5) loratadine (9) H N N Cl N N N cinnarizine (3) O N N N H Cl N Cl N N N O O N loxapine (5) N amoxapine (1) oxatomide (9) O O Adrenoceptor (1) Antibiotic (2) Ca2+ Channel (3) Cyclic Nucleotide (4) Dopamine (5) Hormone (6) Phosphorylation (7) Serotonin (8) Other (9) Supplementary Fig.
    [Show full text]
  • Role of Μ, Κ, and Δ Opioid Receptors in Tibial Inhibition of Bladder Overactivity in Cats
    JPET Fast Forward. Published on September 9, 2015 as DOI: 10.1124/jpet.115.226845 This article has not been copyedited and formatted. The final version may differ from this version. JPET #226845 Role of µ, κ, and δ Opioid Receptors in Tibial Inhibition of Bladder Overactivity in Cats Zhaocun Zhang, Richard C. Slater, Matthew C. Ferroni, Brian Kadow, Timothy D. Lyon Bing Shen, Zhiying Xiao, Jicheng Wang, Audry Kang James R. Roppolo, William C. de Groat, Changfeng Tai Downloaded from Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.) Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA (Z.Z, R.C.S, M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.) Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.) jpet.aspetjournals.org Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA (J.R.R., W.C.D., C.T.) at ASPET Journals on September 25, 2021 Page 1 JPET Fast Forward. Published on September 9, 2015 as DOI: 10.1124/jpet.115.226845 This article has not been copyedited and formatted. The final version may differ from this version. JPET #226845 Running title: Opioid receptors in tibial inhibition of bladder Number of pages: 24 Number of figures: 9 Number of references: 32 Number of words in abstract: 236 Downloaded from Number of words in introduction: 385 Number of words in discussion: 1432 jpet.aspetjournals.org Abbreviations: AA, acetic acid; CMG, cystometrogram; FDA, Food and Drug Administration; OAB, overactive bladder; OR, opioid receptor; PAG, periaqueductal gray; PMC, pontine micturition center; TNS, tibial nerve stimulation; T, threshold Recommended Section: Gastrointestinal, Hepatic, Pulmonary, and Renal at ASPET Journals on September 25, 2021 Corresponding to: Changfeng Tai, Ph.D.
    [Show full text]