Contents the Future of Data Storage Technologies 2 APPENDIX A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Archiving Online Data to Optical Disk
ARCHIVING ONLINE DATA TO OPTICAL DISK By J. L. Porter, J. L. Kiesler, and D. A. Stedfast U.S. GEOLOGICAL SURVEY Open-File Report 90-575 Reston, Virginia 1990 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can be write to: purchased from: Chief, Distributed Information System U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section Mail Stop 445 Federal Center, Bldg. 810 12201 Sunrise Valley Drive Box 25425 Reston, Virginia 22092 Denver, Colorado 80225 CONTENTS Page Abstract ............................................................. 1 Introduction ......................................................... 2 Types of optical storage ............................................... 2 Storage media costs and alternative media used for data archival. ......... 3 Comparisons of storage media ......................................... 3 Magnetic compared to optical media ............................... 3 Compact disk read-only memory compared to write-once/read many media ................................... 6 Erasable compared to write-once/read many media ................. 7 Paper and microfiche compared to optical media .................... 8 Advantages of write-once/read-many optical storage ..................... 8 Archival procedure and results ........................................ 9 Summary ........................................................... 13 References .......................................................... -
The Future of Data Storage Technologies
International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on The Future of Data Storage Technologies Sadik C. Esener (Panel Co-Chair) Mark H. Kryder (Panel Co-Chair) William D. Doyle Marvin Keshner Masud Mansuripur David A. Thompson June 1999 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on the Future of Data Storage Technologies Sponsored by the National Science Foundation, Defense Advanced Research Projects Agency and National Institute of Standards and Technology of the United States government. Dr. Sadik C. Esener (Co-Chair) Dr. Marvin Keshner Dr. David A. Thompson Prof. of Electrical and Computer Director, Information Storage IBM Fellow Engineering & Material Sciences Laboratory Research Division Dept. of Electrical & Computer Hewlett-Packard Laboratories International Business Machines Engineering 1501 Page Mill Road Corporation University of California, San Diego Palo Alto, CA 94304-1126 Almaden Research Center 9500 Gilman Drive Mail Stop K01/802 La Jolla, CA 92093-0407 Dr. Masud Mansuripur 650 Harry Road Optical Science Center San Jose, CA 95120-6099 Dr. Mark H. Kryder (Co-Chair) University of Arizona Director, Data Storage Systems Center Tucson, AZ 85721 Carnegie Mellon University Roberts Engineering Hall, Rm. 348 Pittsburgh, PA 15213-3890 Dr. William D. Doyle Director, MINT Center University of Alabama Box 870209 Tuscaloosa, AL 35487-0209 INTERNATIONAL TECHNOLOGY RESEARCH INSTITUTE World Technology (WTEC) Division WTEC at Loyola College (previously known as the Japanese Technology Evaluation Center, JTEC) provides assessments of foreign research and development in selected technologies under a cooperative agreement with the National Science Foundation (NSF). -
Computer Files & Data Storage
STORAGE & FILE CONCEPTS, UTILITIES (Pages 6, 150-158 - Discovering Computers & Microsoft Office 2010) I. Computer files – data, information or instructions residing on secondary storage are stored in the form of a file. A. Software files are also called program files. Program files (instructions) are created by a computer programmer and generally cannot be modified by a user. It’s important that we not move or delete program files because your computer requires them to perform operations. Program files are also referred to as “executables”. 1. You can identify a program file by its extension:“.EXE”, “.COM”, “.BAT”, “.DLL”, “.SYS”, or “.INI” (there are others) or a distinct program icon. B. Data files - when you select a “save” option while using an application program, you are in essence creating a data file. Users create data files. 1. File naming conventions refer to the guidelines followed while assigning file names and will vary with the operating system and application in use (see figure 4-1). File names in Windows 7 may be up to 255 characters, you're not allowed to use reserved characters or certain reserved words. File extensions are used to identify the application that was used to create the file and format data in a manner recognized by the source application used to create it. FALL 2012 1 II. Selecting secondary storage media A. There are three type of technologies for storage devices: magnetic, optical, & solid state, there are advantages & disadvantages between them. When selecting a secondary storage device, certain factors should be considered: 1. Capacity - the capacity of computer storage is expressed in bytes. -
FWB's Guide to Storage
GtoS 2nd Ed. Book Page i Friday, March 27, 1998 12:05 PM FWB’s Guide to Storage Second Edition GtoS 2nd Ed. Book Page ii Friday, March 27, 1998 12:05 PM Copyright Notice This manual is copyrighted by FWB Software, LLC (FWB) with all rights reserved. Your rights with regard to this manual are subject to the restrictions and limitations imposed by the copyright laws of the United States of Amer- ica. Under the copyright laws, this manual may not be copied, reproduced, translated, transmitted or reduced to any printed or electronic medium or to any machine-readable form, in whole or in part, without the written consent of FWB. © 1991, 1996 By FWB Software, LLC December 1996 Part No.: 07-00841-201 GtoS 2nd Ed. Book Page iii Friday, March 27, 1998 12:05 PM Trademarks Hard Disk ToolKit, RAID ToolKit, SpaceMaker ToolKit, and CD-ROM Tool- Kit are trademarks of FWB Software, LLC. FWB is a registered trademark of FWB Software, LLC. All brand and product names are trademarks or registered trademarks of their respective holders. Credits This guide was written by Norman Fong with help from Joan Carter, Steve Dalton, Bruce Dundas, Eric Herzog, Al Pierce, Stuart Saraquse, and Fred Swan. It was designed, edited, and composed by Joan Carter with help from Allan Levite. Illustrations were produced by Deane Morris. The original version of this manual was written in 1991 by Leslie Feldman, Norman Fong, Kevin Kachadourian, Neil Strudwick, and Paul Worthington as part of FWB’s Hard Disk ToolKit 1.x manual. Dedication This book is dedicated to my family and friends who put up with the long hours put into this effort. -
Design and Test of Embedded Srams Andrei S. Pavlov
Design and Test of Embedded SRAMs by Andrei S. Pavlov A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2005 c Andrei S. Pavlov 2005 I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. Andrei S. Pavlov I further authorize the University of Waterloo to reproduce this thesis by photocopying or other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. Andrei S. Pavlov ii Abstract Embedded SRAMs can occupy the majority of the chip area in SoCs. The increased process spreads of modern scaled-down technologies and non-catastrophic defect-related sensitivity to environmental parameters can compromise the stability of SRAM cells, which is quantified by a low Static Noise Margin (SNM). A Stability Fault (SF) can present itself in a cell whose SNM is so small that it can accidentally flip in the worst-case operating conditions. In this work, we conduct a comprehensive SRAM SNM sensitivity analysis and identify the major factors causing low SNM. Based on this study, we propose a Weak Cell Fault Model, which can be used in fault simulations to mimic an SRAM cell with a compromised SNM. Furthermore, we have derived an analytical expression for the SNM of the recently proposed loadless 4T SRAM cell. Reading a 6T SRAM cell with bit lines precharged to VDD may not detect several types of defects in the pull-up path of the cell. -
Memory and Storage Systems
CHAPTER 3 MEMORY AND STORAGE SYSTEMS Chapter Outline Chapter Objectives 3.1 Introduction In this chapter, we will learn: 3.2 Memory Representation ∑ The concept of memory and its 3.3 Random Access Memory representation. 3.3.1 Static RAM ∑ How data is stored in Random Access 3.3.2 Dynamic RAM Memory (RAM) and the various types of 3.4 Read Only Memory RAM. 3.4.1 Programmable ROM ∑ How data is stored in Read Only Memory 3.4.2 Erasable PROM (ROM) and the various types of ROM. 3.4.3 Electrically Erasable PROM ∑ The concept of storage systems and the 3.4.4 Flash ROM various types of storage systems. 3.5 Storage Systems ∑ The criteria for evaluating storage 3.6 Magnetic Storage Systems systems. 3.6.1 Magnetic Tapes 3.6.2 Magnetic Disks 3.7 Optical Storage Systems 3.1 INTRODUCTION 3.7.1 Read only Optical Disks 3.7.2 Write Once, Read Many Disks Computers are used not only for processing of data 3.8 Magneto Optical Systems for immediate use, but also for storing of large 3.8.1 Principle used in Recording Data volume of data for future use. In order to meet 3.8.2 Architecture of Magneto Optical Disks these two specifi c requirements, computers use two 3.9 Solid-State Storage Devices types of storage locations—one, for storing the data 3.9.1 Structure of SSD that are being currently handled by the CPU and the 3.9.2 Advantages of SSD other, for storing the results and the data for future 3.9.3 Disadvantages of SSD use. -
Show Sags, Technology Too
April 2002 / Volume 15#4 / Issue No. 171 CeBIT 2002 SHOW SAGS, TECHNOLOGY TOO Less major technological innovation, fewer booths and a lot fewer people. For the first time since 1975, the number of exhibitors shrank at CeBIT. Why? (Special report from Jean-Jacques Maleval in Hanover, Germany) No need for panic among the owners of this major event. CeBIT (cebit.de), extended from 7 to 8 days, is still far and away the largest computer show in the world. Nevertheless, overall participation shrank, notwithstanding organiz- ers’ projections of a record 8,316 booths and 810,000 visitors. This year, in fact, there were 131 or 2% fewer booths compared to the previous year. From 2001 to 2002, attendance figures fell significantly, by 18% to roughly 700,000. The trams, the restaurants, the city streets, parking lots, press room and expo floor were decidedly less crowded than last year (much to CEBIT’S GROWTH FROM 1993 TO 2002 the relief of those won- dering how CeBIT could possibly handle more people). Several possible reasons All major general com- puter expos have been hurt this year, and CeBIT was perhaps the least hit. Many are beginning to ask themselves why bother to travel when all the information is a click away on the Internet. It (1) Source: StorageNewsletter (2) Source: CeBIT * estimated doesn’t help, further- more, that the worldwide IT economy is shrinking. Nor is the city of Hanover the best-suited to welcome such an event (and no doubt past visitors have vivid and unpleasant memories of the crowds and the inconvenience). -
Emerging Trends in Storage - Evaluating Future Directions
EMERGING TRENDS IN STORAGE - EVALUATING FUTURE DIRECTIONS Antony Jesa Manager, BI and Analytics Operations EMC [email protected] Vijayakumar Ravindran Cloud Infrastructure Admin EMC [email protected] Table of Contents Table of Figures ............................................................................................................................................. 3 Abstract ......................................................................................................................................................... 4 Introduction .................................................................................................................................................. 5 Magnetic Tape Cartridges: ........................................................................................................................ 6 Solid State Drives: ..................................................................................................................................... 6 Hard Disk Drives: ....................................................................................................................................... 6 Evolution of Hard Disk Drives: ...................................................................................................................... 7 SSD and Flash Disruption .............................................................................................................................. 9 Emerging Trends in Magnetic Storage: A Fight to Stay Relevant .............................................................. -
2 9215FQ14 FREQUENTLY ASKED QUESTIONS Category Pages Facilities & Buildings 3-10 General Reference 11-20 Human Resources
2 FREQUENTLY ASKED QUESTIONS Category Pages Facilities & Buildings 3-10 General Reference 11-20 Human Resources 21-22 Legal 23-25 Marketing 26 Personal Names (Individuals) 27 Predecessor Companies 28-29 Products & Services 30-89 Public Relations 90 Research 91-97 April 10, 2007 9215FQ14 3 Facilities & Buildings Q. When did IBM first open its offices in my town? A. While it is not possible for us to provide such information for each and every office facility throughout the world, the following listing provides the date IBM offices were established in more than 300 U.S. and international locations: Adelaide, Australia 1914 Akron, Ohio 1917 Albany, New York 1919 Albuquerque, New Mexico 1940 Alexandria, Egypt 1934 Algiers, Algeria 1932 Altoona, Pennsylvania 1915 Amsterdam, Netherlands 1914 Anchorage, Alaska 1947 Ankara, Turkey 1935 Asheville, North Carolina 1946 Asuncion, Paraguay 1941 Athens, Greece 1935 Atlanta, Georgia 1914 Aurora, Illinois 1946 Austin, Texas 1937 Baghdad, Iraq 1947 Baltimore, Maryland 1915 Bangor, Maine 1946 Barcelona, Spain 1923 Barranquilla, Colombia 1946 Baton Rouge, Louisiana 1938 Beaumont, Texas 1946 Belgrade, Yugoslavia 1926 Belo Horizonte, Brazil 1934 Bergen, Norway 1946 Berlin, Germany 1914 (prior to) Bethlehem, Pennsylvania 1938 Beyrouth, Lebanon 1947 Bilbao, Spain 1946 Birmingham, Alabama 1919 Birmingham, England 1930 Bogota, Colombia 1931 Boise, Idaho 1948 Bordeaux, France 1932 Boston, Massachusetts 1914 Brantford, Ontario 1947 Bremen, Germany 1938 9215FQ14 4 Bridgeport, Connecticut 1919 Brisbane, Australia -
Optical Data Storage
To appear in International Trends in Optics, 2002 Optical data storage Hans Coufal and Geo®rey W. Burr IBM Almaden Research Center 650 Harry Road San Jose, California 95120 Tel: (408) 927{2441, 927{1512 Fax: (408) 927{2100 E-mail: coufal, [email protected] 1 Introduction The distribution of audio information in disk format|sound stored as modulations in a flat surface|has had a long and successful track record. At ¯rst, analog signals were imprinted on shellac and then later vinyl platters. But recently, sound has been almost exclusively distributed as and replayed from digitally encoded data, molded into the surface of compact polymer disks. This migration was driven by consumer demand for higher ¯delity, i.e., higher bandwidth in recording, replication and playback, which in turn required dramatic increases in the amount of stored information. At ¯rst the diameter of the disk was increased, but this soon reached its practical limit. With a mechanical stylus, increasing the areal storage density increased the susceptibility to wear and tear, which forced a transition from mechanical detection to a non{contact optical scheme. Optical detection retrieves the stored data by sensing changes in the intensity or polarization of a reflected laser beam. In the form of the read-only compact disk, this data storage medium became the dominant vehicle for music distribution (CD) and later for computer software (CD- ROM) [1,2]. With the ferocious appetite of consumers for ever more information at ever higher data rates, the CD{ROM is currently undergoing a metamorphosis into the Digital Versatile Disk (DVD) [3]. -
Delivery Recommendations 070711
Recommendation for Delivery of Recorded Music Projects 080107 rev 48 This document has been created as a Recommendation for Delivery of Recorded Music Projects. This document specifies the physical deliverables that are the foundation of the creative process, with the understanding that it is in the interest of all parties involved to make them accessible for both the short term and the long term. Thus, this document recommends reliable backup, delivery and archiving methodologies for current audio technologies, which should ensure that music will be completely and reliably recoverable and protected from damage, obsolescence and loss. The Delivery Specifications Committee, comprised of producers, engineers, record company executives and others working primarily in Nashville, New York and Los Angeles (and in conjunction with the AES Technical Committee on Studio Practices and Production and the AES Nashville Section), developed the Delivery Recommendations over the course of two years. During its development, the committee met regularly at the Recording Academy® Nashville Chapter offices to debate the issues surrounding the short term and long term viability of the creative tools used in the recording process, and to design a specification in the interest of all parties involved in the recording process. The committee reached consensus in July, 2002 and the committee’s recommendations were finalized and presented to The Recording Academy Producers & Engineers Wing membership, the overall recording community, and to press in Nashville on July 19, 2002. The document was also presented to the AES in the Studio Practices and Production Tech Committee meeting on October 7th, 2002 in Los Angeles, and on March 24th, 2003 in Amsterdam. -
Signal Processing Participants Introduction
Signal Processing Participants Vijayakumar Bhagavatula, Carnegie Mellon University Dave Blankenbeckler, DataPlay Chong Tow Chong, Data Storage Institute Dennis Howe, University of Arizona Seiji Kobayashi, Sony Hiroshi Koide, Ricoh Jay Livingston, Cirrus Logic Steve McLaughlin, Georgia Institute of Technology (Co-leader) Kees Schep, Philips LuPing Shi, Data Storage Institute Terry Wong, Calimetrics (Co-leader) Fumihiko Yokogawa, Pioneer Introduction In the last NSIC optical data storage roadmap [12], signal processing and multilevel recording were broken out as separate sections. However, there is a great deal of overlap between these two subject areas. In particular, multilevel recording is enabled by signal processing technology improvements in the writing and reading of an optical data storage system. Thus, it seemed logical to combine the subgroups that cover these areas. On the other hand, the technology of multilevel recording has grown substantially in its own right since the last roadmap was published in 2000. In this section, we first introduce the current state of signal processing technology. Within the discussion of the current state of the technology, we have a separate subsection that introduces the basics of multilevel recording and reviews three examples of multilevel systems. We then focus on signal processing areas that, in the future, are likely to become important for optical data storage. And finally, since signal processing in general is mostly an enabling technology and would be difficult to “roadmap”, we present a roadmap for products using multilevel recording. © 2003 Information Storage Industry Consortium – All Rights Reserved INSIC International Optical Data Storage Roadmap Reproduction Without Permission is Prohibited August 2003 1 Signal processing and coding have become increasingly important and powerful parts of optical data storage systems.