The Role of Fractional Crystallization, Magma Recharge, and Magma Mixing in the Differentiation of the Small Hasandag Volcano, Central Anatolia, Turkey

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Fractional Crystallization, Magma Recharge, and Magma Mixing in the Differentiation of the Small Hasandag Volcano, Central Anatolia, Turkey Lithos 125 (2011) 984–993 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos The role of fractional crystallization, magma recharge, and magma mixing in the differentiation of the Small Hasandag volcano, Central Anatolia, Turkey Gokce Ustunisik a,⁎, Attila Kilinc b a Department of Geosciences, SUNY at Stony Brook, Stony Brook, NY, 11794-2100, USA b Department of Geology, University of Cincinnati, Cincinnati, OH, 45221-0013, USA article info abstract Article history: During the last 7 Ma, eruptions of the Small Hasandag composite volcano in Central Anatolia, Turkey, have Received 9 November 2010 produced calc-alkaline lavas ranging in composition from basalt to rhyolite. Published research on this Accepted 28 May 2011 volcano suggests that crystal fractionation and magma mixing are the two important processes controlling the Available online 15 June 2011 differentiation of the Small Hasandag magmas. The shortcomings of previous studies are that neither the intensive variables (P, T, fO ) nor the constraints under which the presumed parental magmas evolved have Keywords: 2 been quantitatively evaluated. Small Hasandag volcano Magma recharge In this study, we have used the MELTS algorithm of Ghiorso and Sack (1995) to determine the initial system Isobaric–isenthalpic magma mixing parameters in terms of temperature (T), pressure (P), oxygen fugacity (fO2), and water content (wt.% H2O) Isobaric–isothermal magma mixing and then evaluated the consequences of magma differentiation under closed system fractional crystallization, MELTS algorithm magma recharge, and magma mixing conditions separately. In order to determine the initial system parameters, we carried out approximately 100 isobaric fractional crystallization simulations of the parental basaltic andesite magma (Mg#68) in the pressure range of 1 bar to 10,000 bars, an fO2 range of QFM+1 to QFM+3 and at water contents from 0 to 4 wt.%. The best agreement between the computed melt compositions and the natural rocks was achieved at P=1000 bars, fO2 =QFM+1, and 2 wt.% water. Computations with parental basaltic andesite at these initial system conditions and under isobaric fractional crystallization generated melt compositions from basaltic andesite to dacite that are very similar to observed lava compositions. Compositions more evolved than dacites, however, cannot be produced by closed system fractional crystallization alone. This is because rhyolites generated by closed system fractional crystallization have total alkali (Na2O+K2O) values lower than those of the Small Hasandag rhyolites. Furthermore, natural rock compositions in the silica range of 62–65 wt.% show discrete cycles of sudden increase and decrease in the MgO content in the range of 0.5–1 wt.%, suggesting magma replenishment. This study shows that fractional crystallization and magma recharge in the composition range of basaltic andesite to dacite, followed by isobaric–isenthalpic mixing of dacite with the most differentiated rhyolite (Mg#46) generate melt compositions that most closely resemble the entire compositional range of the Small Hasandag lavas, including the rhyolites. The agreement between the liquid line of descent defined by the natural lavas and MELTS calculations, and the agreement between the observed mineralogy of the rocks and the calculated order of crystallization support this conclusion. © 2011 Elsevier B.V. All rights reserved. 1. Introduction Previous studies on the petrology and geochemistry of the Hasandag volcanics have provided a detailed geological map of the Hasandag and The Small Hasandag volcano is one of three calc-alkaline volcanoes in the Small Hasandag volcanoes, as well as descriptions of the regional Central Anatolia, the others being the Hasandag volcano and the Erciyes stratigraphy, of lava flows and pyroclastic materials, and some age volcano (Fig. 1). It has erupted many times during the past 7 Ma, determinations based on K/Ar isotopes (Aydar and Gourgaud, 1998; covering a large part of this region with lava flows and pyroclastic Daniel et al., 1998; Ercan et al., 1990). Three evolutionary stages; stage 1: materials (Daniel et al., 1998). It is an excellent example of a subduction paleovolcano, 7 Ma, stage 2: mesovolcano, 1 Ma and stage 3: neovolcano, zone calc-alkaline volcano, and provides a well-exposed suite of rocks b1 Ma; have been recorded in the history of Hasandag complex (Aydar ranging in composition from basalt to andesite, dacite, and rhyolite. and Gourgaud, 1998). In their interpretations of the petrogenesis of the Hasandag volcanics, previous researchers emphasized different process- es. For example, to explain the wide range of compositional diversity ⁎ Corresponding author. exhibited by the volcanic rocks, Aydar and Gourgaud (1998) suggested E-mail address: [email protected] (G. Ustunisik). that fractional crystallization was the governing process for evolution of 0024-4937/$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.lithos.2011.05.013 G. Ustunisik, A. Kilinc / Lithos 125 (2011) 984–993 985 Fig. 1. Simplified tectonic context of Turkey and the distribution of Central Anatolian Volcanics (CAV) including Hasandag, Small Hasandag, and Erciyes (modified from Aydar and Gourgaud, 1998). the Hasandag magma. Their conclusions were based on decreasing MgO shown in Harker diagrams may suggest crystal fractionation, they do and TiO2 and increasing Na2OandK2O with increasing SiO2. On the other not give information about the initial state of the system. Even if hand, Daniel et al. (1998) used least-square calculations between basaltic crystal fractionation was the controlling process at the Small and rhyolitic end members to suggest that magma mixing dominates the Hasandag volcano, the initial state of the system that produced the petrogenesis of intermediate compositions (i.e. andesites and dacites). In rocks under fractional crystallization constraint is not known. addition to being contradictory, these studies do not provide a Consideration of fluid dynamics and the thermodynamics of magma quantitative evaluation of the proposed processes. mixing suggests that magma evolution is a very complicated process; An implication of the fractional crystallization model, which Aydar even bringing two magmas together in a magma chamber does not and Gourgaud (1998) based on linear trends shown in the Harker necessarily result in mixing of the two magmas (Huppert and Sparks, diagrams, is that crystal fractionation processes follow the same path 1980; Russell, 1990; Sparks and Marshall, 1986). Magma mixing under different initial system conditions and constraints. If this calculations as modeled by the least-square calculations of Daniel assumption were true, fractional crystallization taking place under et al. (1998) are based only on mass transfer of oxides between a mafic different initial state variables for the system would produce melts of and a felsic magma to generate the intermediate hybrid compositions. In the same composition. This is clearly not true because crystal such calculations the intensive variables of mixing (e.g. P, T, and fO2)are fractionation can take place under isobaric (Druitt and Bacon, 1989) not specified, yet these variables can alter the results of the calculations or polybaric (Kuritani, 1999), or isentropic (Blundy and Cashman, significantly. Most importantly, in a quantitative analysis of magma 2005), or even isochoric (constant volume) conditions and in each mixing, not only mass transfer but also heat transfer between two case the path of magma evolution is different. Although the patterns magmas must be considered. Magma mixing in nature involves mixing Fig. 2. Photomicrographs under cross polarized light showing some of the important textures and features from the Small Hasandag andesite and dacites. Plag: plagioclase, Qz: quartz, Bi: biotite, Opx: orthopyroxene, Cpx: clinopyroxene, and MI: melt inclusion. 986 G. Ustunisik, A. Kilinc / Lithos 125 (2011) 984–993 of a more primitive magma at higher temperature with a more constrained the initial state of the system, we then calculated magma differentiated magma at lower temperature. Thermodynamic principles evolution paths for three models: (a) isobaric fractional crystalliza- applied to this process require that the total heat content of the system tion, (b) isothermal magma recharge and (c) isobaric–isenthalpic must be constant and equal to the sum of the enthalpies of the two magma mixing. magmas. Therefore, a realistic and geologically tractable modeling of magma mixing at a given depth must be carried out under isobaric– 2. Mineralogy of Small Hasandag volcanic rocks isenthalpic conditions, assuming that the heat loss to the wall rock is negligible (Dogan et al., 2007). The porphyritic basaltic andesite from the Small Hasandag volcano In this study, we first constrained the initial intensive variables for shows glomeroporphyrtic and intersertal textures. The characteristic the Small Hasandag parental magma, P, T, wt.% H2O, and fO2. Having mineral composition includes plagioclase, clinopyroxene, orthopyroxene, Table 1 Chemical composition of Small Hasandag volcanic rocks (basaltic andesite to rhyolite) in terms of weight percent of oxides (reported on anhydrous basis). Rocks have been analyzed by the XRF method. Standard deviation indicates the analytical precision based on the repeated analyses of standards. Sample number SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2OK2OP2O5 Total Mg number GU-07-08 56.28 0.93
Recommended publications
  • Acigöl Rhyolite Field, Central Anatolia (Part 1): High-Resolution Dating of Eruption Episodes and Zircon Growth Rates
    Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates Axel K. Schmitt, Martin Danišík, Noreen J. Evans, Wolfgang Siebel, Elena Kiemele, Faruk Aydin & Janet C. Harvey Contributions to Mineralogy and Petrology ISSN 0010-7999 Volume 162 Number 6 Contrib Mineral Petrol (2011) 162:1215-1231 DOI 10.1007/s00410-011-0648-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Contrib Mineral Petrol (2011) 162:1215–1231 DOI 10.1007/s00410-011-0648-x ORIGINAL PAPER Acigo¨l rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates Axel K. Schmitt • Martin Danisˇ´ık • Noreen J. Evans • Wolfgang Siebel • Elena Kiemele • Faruk Aydin • Janet C. Harvey Received: 22 January 2011 / Accepted: 3 May 2011 / Published online: 24 May 2011 Ó Springer-Verlag 2011 Abstract Protracted pre-eruptive zircon residence is fre- crystallized in two brief pulses corresponding to eruptions quently detected in continental rhyolites and can conflict in the eastern and western part of the field during Middle with thermal models, indicating briefer magma cooling and Late Pleistocene times, respectively.
    [Show full text]
  • The Mineralogy and Chemistry of the Anorogenic Tertiary Silicic Volcanics
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 86, NO. Bll, PAGES 10242-10256, NOVEMBER 10, 1981 The Mineralogyand Chemistryof the AnorogenicTertiary SilicicVolcanics of S.E. Queenslandand N.E. New South Wales, Australia A. EWART Departmentof Geology& Mineralogy,University of Queensland,St. Lucia,Brisbane, Queensland 4067 The Late Oligocene-EarlyMiocene volcanismof this regionis chemicallystrongly bimodal; the mafic lavas(volmetrically dominant) comprise basalts, hawaiites, and tholeiiticandesites, while the silicic eruptivesare mainly comendites,potassic trachytes, and potassic,high-silica rhyolites.The comendites and rhyoliteshave distinctivetrace element abundancepatterns, notably the extreme depletionsof Sr, Ba, Mg, Mn, P, Cr, V, and Eu, and the variable em'ichraentof suchelements as Rb, Zr, Pb, Nb, Zn, U, and Th. The trachytesexhibit thesecharacteristics to lesserdegrees. The comenditesare distinguished from the rhyolitesby their overall relative enrichmentof the more highly chargedcations (e.g., LREE, Nb, Y, and especiallyZr) and Zn. The phenocrystmineralogy of the trachytesand rhyolitescomprises various combinationsof the following phases:sodic plagioclase(albite-andesine), calcic anorthoclase, sanidine, quartz, ferroaugite-ferrohedenbergite,ferrohypersthene, fayalitic olivine, ilmenite, titano- magnetite,and rarely biotite (near annite) and Fe-hastingsiticamphibole. Accessories include apatite, zircon, chevkinite (ferrohedenbergite-bearingrhyolites only), and allanite (amphibole and botite rhyo- lites only). The comenditesgenerally contain
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Yer-18-1-1-0806-2:Mizanpaj 1
    Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 18, 2009, pp. 1–27. Copyright ©TÜBİTAK doi:10.3906/yer-0806-2 First published online 07 July 2008 Geochemical Characteristics of Mafic and Intermediate Volcanic Rocks from the Hasandağ and Erciyes Volcanoes (Central Anatolia, Turkey) AYKUT GÜÇTEKİN & NEZİHİ KÖPRÜBAŞI Department of Geological Engineering, Kocaeli University, TR–41040 İzmit, Turkey (E-mail: nezihi@ kocaeli.edu.tr) Received 23 June 2007; revised typescript received 24 November 2007; accepted 07 December 2007 Abstract: Hasandağ and Erciyes stratovolcanoes, which are the two important stratovolcanoes in Central Anatolia, erupted volcanic products with both calc-alkaline and alkaline compositions, although the calc-alkaline activity is more widespread. There are three stages of geochemical evolution in the history of the Hasandağ stratovolcanic complex: (1) Keçikalesi tholeiitic volcanism, (2) Hasandağ calc-alkaline volcanism, and (3) Hasandağ alkaline volcanism. The geochemical evolution of Erciyes volcanic complex also exhibits three distinct evolutionary stages: (1) Koçdağ alkaline volcanism, (2) Koçdağ calc-alkaline volcanism and (3) Erciyes calc- alkaline volcanism. The volcanic rocks from both suites show enrichments in LREE relative to HREE. The rocks as a whole show enrichments in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) in N-MORB normalized multi- element diagrams, although the thoeliitic and alkaline rocks have less pronounced effects of HFSE/LILE fractionation comparing to the calc-alkaline rocks. Theoretical fractionation models obtained using the whole-rock trace element data indicate two distinct fractionation trends for the Hasandağ volcanism: amphibole and plagioclase fractionation for the tholeiitic and calc-alkaline rocks and plagioclase, pyroxene and amphibole fractionation for the alkaline rocks.
    [Show full text]
  • 4/5/2010 1 EPS 101/271 Lecture 16: Dacite “Rhyolite” Source Region
    4/5/2010 EPS 101/271 Lecture 16: Dacite “Rhyolite” Source Region Geodetic Markers and Accuracy of the GPS units we use Chronology: 1871 Department formed by Joseph LeConte 1887 Charles Palache graduates from Berkeley High and enters Cal as a Freshman, continues on in graduate school 1892 Andrew Lawson teaches the first “systematic field geology class in the US” using Berkeley Hills 1893 Charles Palache publishes the results of the first doctoral thesis in geology at UC: “The Soda Rhyolite North of Berkeley” UC Bulletin of the Dept. of Geology, v. 1, p. 61-72 1902 Lawson and Palache publish “The Berkeley Hills- A Detail of Coast Range Geology” Bulletin of the Dept. of Geology,v. 2, p. 349-450 1 4/5/2010 The start of our Berkeley Field Tradition Lawson ’s first fie ld c lass 1892 Strawberry Creek Stadium Missing the Rhyolite Tuffs Hayward Fault Claremont Canyon Lawson and Palache’s map of the Berkeley Hills Global vs Local control on lithology Recall the explanation of the Miocene stratigraphic sequence Global climatic change Sudden global cooling FtiflFormation of polar ice caps Marine Regression causing the litho-sequence 2 4/5/2010 Rhyolites and Basalts Dacites SiO2 (Silica) 3 4/5/2010 Brimhall 2004 4 4/5/2010 Constraints on the Origin of Rhyolite Tuffs in the Berkeley/Oakland Hills Tecuya Formation in S CA Basalts Mixing lines as the result of ridge/trench collision Rhyolites Franciscan Initial Cole and Basu (1992) 5 4/5/2010 Source region for rhyolite magmas involves continental crust: Franciscan or its derivatives eg Orinda Rhyolite
    [Show full text]
  • Chemical and Isotopic Studies of Monogenetic Volcanic Fields: Implications for Petrogenesis and Mantle Source Heterogeneity
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Christine Rasoazanamparany Candidate for the Degree DOCTOR OF PHILOSOPHY ______________________________________ Elisabeth Widom, Director ______________________________________ William K. Hart, Reader ______________________________________ Mike R. Brudzinski, Reader ______________________________________ Marie-Noelle Guilbaud, Reader ______________________________________ Hong Wang, Graduate School Representative ABSTRACT CHEMICAL AND ISOTOPIC STUDIES OF MONOGENETIC VOLCANIC FIELDS: IMPLICATIONS FOR PETROGENESIS AND MANTLE SOURCE HETEROGENEITY by Christine Rasoazanamparany The primary goal of this dissertation was to investigate the petrogenetic processes operating in young, monogenetic volcanic systems in diverse tectonic settings, through detailed field studies, elemental analysis, and Sr-Nd-Pb-Hf-Os-O isotopic compositions. The targeted study areas include the Lunar Crater Volcanic Field, Nevada, an area of relatively recent volcanism within the Basin and Range province; and the Michoacán and Sierra Chichinautzin Volcanic Fields in the Trans-Mexican Volcanic Belt, which are linked to modern subduction. In these studies, key questions include (1) the role of crustal assimilation vs. mantle source enrichment in producing chemical and isotopic heterogeneity in the eruptive products, (2) the origin of the mantle heterogeneity, and (3) the cause of spatial-temporal variability in the sources of magmatism. In all three studies it was shown that there is significant compositional variability within individual volcanoes and/or across the volcanic field that cannot be attributed to assimilation of crust during magmatic differentiation, but instead is attributed to mantle source heterogeneity. In the first study, which focused on the Lunar Crater Volcanic Field, it was further shown that the mantle heterogeneity is formed by ancient crustal recycling plus contribution from hydrous fluid related to subsequent subduction.
    [Show full text]
  • Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses Jordan Lubbers Michigan Technological University, [email protected] Copyright 2016 Jordan Lubbers Recommended Citation Lubbers, Jordan, "Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses", Open Access Master's Thesis, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/99 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Geology Commons RHYOLITE AND TRACHYTE FORMATION AT LAKE CITY CALDERA: INSIGHT FROM QUANTITATIVE TEXTURAL AND GEOCHEMICAL ANALYSES By Jordan E. Lubbers A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jordan E. Lubbers This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Geological and Mining Engineering and Sciences ThesisDepartment Advisor: ofChad Deering Committee Member: Olivier Bachmann Committee Member: William Rose Department Chair: John Gierke Table of Contents Acknowledgements ................................................................................................................................................. 6 Abstract ......................................................................................................................................................................
    [Show full text]
  • GEOLOGIC MAP of the MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE of SOUTHERN WASHINGTON by Wes Hildreth and Judy Fierstein
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2460 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE OF SOUTHERN WASHINGTON By Wes Hildreth and Judy Fierstein When I climbed Mount Adams {17-18 August 1945] about 1950 m (6400') most of the landscape is mantled I think I found the answer to the question of why men by dense forests and huckleberry thickets. Ten radial stake everything to reach these peaks, yet obtain no glaciers and the summit icecap today cover only about visible reward for their exhaustion... Man's greatest 2.5 percent (16 km2) of the cone, but in latest Pleis­ experience-the one that brings supreme exultation­ tocene time (25-11 ka) as much as 80 percent of Mount is spiritual, not physical. It is the catching of some Adams was under ice. The volcano is drained radially vision of the universe and translating it into a poem by numerous tributaries of the Klickitat, White Salmon, or work of art ... Lewis, and Cis pus Rivers (figs. 1, 2), all of which ulti­ William 0. Douglas mately flow into the Columbia. Most of Mount Adams and a vast area west of it are Of Men and Mountains administered by the U.S. Forest Service, which has long had the dual charge of protecting the Wilderness Area and of providing a network of logging roads almost INTRODUCTION everywhere else. The northeast quadrant of the moun­ One of the dominating peaks of the Pacific North­ tain, however, lies within a part of the Yakima Indian west, Mount Adams, stands astride the Cascade crest, Reservation that is open solely to enrolled members of towering 3 km above the surrounding valleys.
    [Show full text]
  • Volcanoes a to Z
    Mount St Helens National Volcanic Monument – Teacher’s Corner -Teacher Info. Gifford Pinchot National Forest USDA Forest Service Volcanoes A to Z – Bus Activity Time Requirement: all day Exhibit / Trail Used: all exhibits/trails visited Locations: all locations visited, review on the bus en route back to your school. This activity is to be completed throughout the day and between other activities. Students will make note of key words while reading exhibits, interpretive signs, or labels, or by hearing them from each other, their teacher, movies or rangers. Consider distributing on the bus and collecting on the bus. Goal: 1) The student will become familiar with terminology related to the study of volcanoes, geology, or the ecosystems that surround them. Objectives: 1) The student will listen attentively. 2) The student will recall and list vocabulary words for things and concepts encountered on a field trip to Mount St. Helens National Volcanic Monument. 3) The student will distinguish nouns from other parts of speech. WASHINGTON EALRS and OREGON BENCHMARK STANDARDS Washington Social Studies 2.0- The student understands the complex physical and human characteristics of places and regions. Geography 2.1- Describe the natural characteristics of places and regions. Science 4.2 Use writing and speaking skills to organize and express science ideas. a. Use science vocabulary appropriately in written explanations, conversations and verbal presentations. Oregon Science-CCG The Dynamic Earth- Understand the properties and limited availability of the materials which make up the Earth. BM1- Recognize physical differences in Earth materials. Language-CCG Select functional, precise, and descriptive words appropriate to audience and purpose.
    [Show full text]
  • Putting the Lava in the Lava Beds
    Lava Beds National Monument National Park Service Putting the Lava in the Lava Beds Reporting To the average layman, perhaps, it may seem that when geologists write reports, they write them for other geologists to read and study. They speak to each other in a language that only they can fully comprehend. Most of us have difficulty understanding all their terms and how they are used and simple processes can become too complex to comprehend. Understanding We have an advantage here when we study the geology of Lava Beds National Monument. We do not have to identify several different types of sandstone, different types of limestones, various qualities of shales, or different granites, quartzes, or mineral ores. We have one basic rock to study and that is lava. While there are four types of lava (basalt, andesite, dacite, and rhyolite), it takes a trained geologist to tell one from the other; to most of us, they are all just lava. They differ only in the amounts of silica they contain. As you may know, clear glass is nearly all silica. Rhyolite may contain as much as 77% silica and thus is responsible for the forming of obsidian, or "volcanic glass." Basalt, on the other hand, is less than one-half silica and is therefore less spectacular and looks more like what we might expect cooled, hardened lava to be. Over 90% of the lava we see in Lava Beds National Monument is basalt. Andesite, with only slightly more silica, accounts for nearly all the rest. Volcanism Many visitors ask if these lava flows were formed by the eruptions of Mount Shasta.
    [Show full text]
  • The Boring Volcanic Field of the Portland-Vancouver Area, Oregon and Washington: Tectonically Anomalous Forearc Volcanism in an Urban Setting
    Downloaded from fieldguides.gsapubs.org on April 29, 2010 The Geological Society of America Field Guide 15 2009 The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: Tectonically anomalous forearc volcanism in an urban setting Russell C. Evarts U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA Richard M. Conrey GeoAnalytical Laboratory, School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164, USA Robert J. Fleck Jonathan T. Hagstrum U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These vol- canoes constitute the Boring Volcanic Field, which is centered in the Neogene Port- land Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many mono- genetic volcanic fi elds, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic fi eld have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag- netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr.
    [Show full text]
  • Cerro Pizarro Volcano, Mexico by G. Carrasco-Nú
    1 Polygenetic nature of a rhyolitic dome and implications for hazard assessment: 2 Cerro Pizarro volcano, Mexico 3 by G. Carrasco-Núñez and N. Riggs 4 5 ABSTRACT 6 Rhyolitic domes are commonly regarded as monogenetic volcanoes associated with single, brief 7 eruptions. They are characterized by short-lived successions of pyroclastic and effusive activity 8 associated with a series of discrete eruptive events that apparently last on the order of years to 9 decades. Cerro Pizarro, a ~ 1.1 km3 rhyolitic dome in the eastern Mexican Volcanic Belt, shows 10 aspects of polygenetic volcanism including long-term repose periods (~ 50-80 ky) between 11 eruptions, chemical variations with time, and a complex evolution of alternating explosive and 12 effusive eruptions, a cryptodome phase, and sector collapse. This eruptive behavior provides 13 new insights into how rhyolite domes may evolve. A protracted, complex evolution bears 14 important implications for hazard assessment if reactivation of an apparently extinct rhyolitic 15 dome must be seriously considered. 16 17 Keywords: monogenetic volcanism, polygenetic volcanism, rhyolites, dome growth, volcanic 18 hazards, Mexican Volcanic Belt 19 20 INTRODUCTION 21 Monogenetic volcanoes comprise a wide spectrum of relatively small volcanic structures 22 (generally less than a few km3 erupted material) that show a commonly simple evolution (one 23 eruption, or a few clearly related eruptions), short life span (commonly years to decades for 24 mafic volcanoes, but possibly as much as a few centuries for rhyolitic domes), and minor 25 chemical composition changes. Monogenetic volcanoes are, in general, either basalt or rhyolite, 26 while polygenetic volcanoes, which erupt repeatedly and have a large and persistent magma 27 storage chamber, are commonly andesitic or dacitic in composition.
    [Show full text]