Math 6310, Fall 2017 Homework 8 1. Let I and J Be Comaximal 2-Sided

Total Page:16

File Type:pdf, Size:1020Kb

Math 6310, Fall 2017 Homework 8 1. Let I and J Be Comaximal 2-Sided Math 6310, Fall 2017 Homework 8 1. Let I and J be comaximal 2-sided ideals of a ring R. Show that I \ J = IJ + JI. + + 2. The Euler function φ : Z ! Z is defined by ¯ φ(n) := jfi 2 Zn j gcd(i; n) = 1gj: × (a) Show that φ(n) = jZn j. (b) Show that if p is prime then φ(pa) = pa − pa−1. (c) Show that if gcd(ni; nj) = 1 for all i 6= j then φ(n1 ··· nk) = φ(n1) ··· φ(nk). a1 ak (d) Write n = p1 ··· pk where the pi are distinct primes. Show that 1 1 φ(n) = n(1 − ) ··· (1 − ): p1 pk + φ(n) 3. (a) Show that for any n 2 Z and a 2 Z with gcd(a; n) = 1, we have a ≡ 1 mod n. p (b) Show that for any prime p and a 2 Z, we have a ≡ a mod p (Fermat's little theorem). [0;1] 4. Let R := R be the ring of all functions [0; 1] ! R, and S := C[0; 1] the subring of continuous functions. (a) Show that neither R nor S are noetherian by constructing a strictly increasing chain of ideals in each. (b) Let I := ff 2 R j f(1=2) = 0g. Show that I is a principal ideal of R. (c) Let J := ff 2 S j f(1=2) = 0g. Show that the ideal J of S is not finitely generated and deduce again that S is not noetherian. [Suppose J = (f1; : : : ; fk), define g := maxfjf1j;:::; jfkjg. Show that: (i) there is a sequence x ! 1=2 such that g(x ) 6= 0 for all n; (ii) there is a constant M > 0 p n n such that g ≤ M · g.] ∼ ∼ (d) Show that R=I = R = S=J and deduce that I and J are maximal (in R and S, respectively). 5.( Field of fractions) Let D be an integral domain and D] := D n f0g. Define operations + and · on D × D as follows: (a; b) + (c; d) := (ad + bc; bd); (a; b) · (c; d) := (ac; bd): Note that each operation turns D × D into a monoid and that D × D] is a submonoid. (a) Define a relation on D × D] as follows: (a; s) ∼ (a0; s0) if as0 = a0s: Show that ∼ is an equivalence relation and that it is compatible with + and ·. 1 a ] ] (b) Let s denote the class of (a; s) 2 D × D and Q := (D × D )= ∼ denote the set of equivalence classes. Show that Q is a field with operations a b at + bs a b ab + := ; · := : s t st s t st Make sure you check the distributivity axiom, among other things. a (c) Let δ : D ! Q be δ(a) = 1 . Show that δ is an injective morphism of rings. (d) Let F be a field and ' : D ! F an injective morphism of rings. Show that there is a unique morphism of fields 'b : Q ! F such that the diagram below commutes. D δ / Q ' ' b F Deduce that Q is isomorphic to a subfield of F . We say that Q is the field of fractions of D. 6.( Ring of fractions) Let R be a commutative ring. A subset of R is multiplicatively closed if it is a submonoid of (R; ·; 1). Let S be such a subset. (a) Define a relation on R × S as follows: (a; s) ∼ (a0; s0) if there is t 2 S such that as0t = a0st. Show that ∼ is an equivalence relation and that it is compatible with + and ·. (These operations on R × S are defined as in Exercise5.) a −1 (b) Let s denote the class of (a; s) 2 R × S and S R denote the set of equivalence classes. Show that S−1R is a commutative ring with operations a b at + bs a b ab + := ; · := : s t st s t st Make sure you check the distributivity axiom, among other things. (c) Show that S−1R is the trivial ring if and only if 0 2 S. −1 a (d) Let δ : R ! S R be δ(a) = 1 . Show that δ is a morphism of rings. (e) Let ' : R ! R0 be a morphism of rings such that '(s) is invertible in R0 for each −1 0 s 2 S. Show that there is a unique morphism of rings 'b : S R ! R such that the diagram below commutes. R δ / S−1R ' ' b " R0 We say that S−1R is the ring of fractions of R with denominators in S. 7. Let R be a commutative ring and I an ideal of R. We say that I is prime if given a; b 2 R, if ab 2 I, then either a 2 I or b 2 I. 2 (a) Show that I is prime if and only if R=I is an integral domain. (b) Show that R is an integral domain if and only if f0g is a prime ideal. (c) Show that if I is maximal, then it is prime. (d) Let f : R ! R0 be a morphism of rings and J a prime ideal of R0. Show that f −1(J) is a prime ideal of R. 8. Let R be a commutative ring. Suppose there exists a prime ideal P of R which doesn't contain any zero divisor. Show that R is an integral domain. 9. Let R be a commutative ring. (a) Let I be an ideal and S = R n I. Show that I is prime and proper if and only if S is multiplicatively closed. The ring of fractions S−1R, with S = R n I, is the localization of R at I. n (b) Let a be an element of R and S = fa j n 2 Ng. Show that S is multiplicatively closed and that S−1R is the trivial ring if and only if a is nilpotent. (An element n a 2 R is nilpotent if there is n 2 N such that a = 0.) (c) Let S = Rnf0g. Show that R is an integral domain if and only if S is multiplicatively closed. Show that in this case the equivalence relation of Exercise6 reduces to that of Exercise5. (Hence, the ring of fractions is in this case the field of fractions.) 10. Let R be a nontrivial ring, D a division ring, and ' : D ! R a morphism of rings. Show that ' is injective. 11. Let G be a group and | a commutative ring. Let |G be the group algebra of G, as in Homework 7. −1 (a) Given x; g 2 G and f 2 |G, show that (f ∗ δg)(x) = f(xg ). (b) A function f : G ! | that is constant on each conjugacy class of G is called a class function. Show that Z(|G) is precisely the subspace of class functions. [Consider δg−1 ∗ f ∗ δg.] 3 12. (a) Let R be a left noetherian ring and let S be an arbitrary subset of R. Show that there is a finite subset S0 ⊆ S such that hSi = hS0i. (b) Let | be a commutative noetherian ring. Given a set S ⊆ |[x1; : : : ; xn], let n Z(S) := fa 2 | j f(a) = 0 for all f 2 Sg: Show that there is a finite subset S0 ⊆ S such that Z(S) = Z(S0). The first part is a strong version of the result seen in class that all left ideals in a left noetherian ring are finitely generated. The second states that given a system of polynomial equations, we can always find finitely many among them such that the cor- responding subsystem has the same solutions. 13. A ring is left artinian ring if it satisfies the descending chain condition on left ideals, or equivalently (why?) if every nonempty set of left ideals has a minimal element. (a) Show that Z is not artinian. (b) Let | be a field A be a |-algebra such that dim| A < 1. Show that A is left artinian and left noetherian. (Recall our rings are always unital.) It is a consequence of the Akizuki-Hopkins-Levitzki theorem that a left artinian ring is necessarily left noetherian. Part (a) shows that the converse does not hold. Also, the corresponding statement for modules does not hold. 14. Let I be a left ideal of R and M a left R-module. Let IM denote the set of finite linear combinations of elements of M with coefficients in I. (a) Show that IM is an R-submodule of M. (b) Suppose that the ideal I is 2-sided. (i) Make M=IM into a left R=I-module. (ii) Let N be a left R=I-module. Make N into an R-module with IN = 0. 15. Let R be a commutative ring in which all prime ideals are finitely generated. This exercise will prove a theorem of I. S. Cohen stating that such a ring is noetherian. Suppose R has an ideal which is not finitely generated. (a) Show that there is an ideal I which is maximal among those which are not finitely generated. (b) Show that R=I is noetherian. (c) Find ideals J and K such that I ⊂ J; I ⊂ K yet JK ⊆ I: (Note the proper inclusions on the left.) [Use the hypothesis on prime ideals!] (d) Show that J, K and JK are finitely generated over R. (e) Show that J=JK is a module over R=I, and as such it is finitely generated. (f) Deduce that I=JK is finitely generated over R=I, hence over R.
Recommended publications
  • Group Theory
    Group Theory Hartmut Laue Mathematisches Seminar der Universit¨at Kiel 2013 Preface These lecture notes present the contents of my course on Group Theory within the masters programme in Mathematics at the University of Kiel. The aim is to introduce into concepts and techniques of modern group theory which are the prerequisites for tackling current research problems. In an area which has been studied with extreme intensity for many decades, the decision of what to include or not under the time limits of a summer semester was certainly not trivial, and apart from the aspect of importance also that of personal taste had to play a role. Experts will soon discover that among the results proved in this course there are certain theorems which frequently are viewed as too difficult to reach, like Tate’s (4.10) or Roquette’s (5.13). The proofs given here need only a few lines thanks to an approach which seems to have been underestimated although certain rudiments of it have made it into newer textbooks. Instead of making heavy use of cohomological or topological considerations or character theory, we introduce a completely elementary but rather general concept of normalized group action (1.5.4) which serves as a base for not only the above-mentioned highlights but also for other important theorems (3.6, 3.9 (Gasch¨utz), 3.13 (Schur-Zassenhaus)) and for the transfer. Thus we hope to escape the cartesian reservation towards authors in general1, although other parts of the theory clearly follow well-known patterns when a major modification would not result in a gain of clarity or applicability.
    [Show full text]
  • Ideal Theory of the Abelian Group-Algebra
    IDEAL THEORY OF THE ABELIAN GROUP-ALGEBRA. ]~Y T. VENK&TARAYUDU, M.A. (University oŸ Madras.) Received September 30, 1937. (Communicated by Dr. R. Vaidyanathaswamy, ~t.A., D.SC.) 1. Introduction. la: is well known 1 that the group-algebra over a commutative corpus K defined by a finite group G is semi-simple, when the characteristic p of the corpus K is not a divisor of the order N of the group and that in this case, the group-algebra K [G] is the direct sum of simple algebras whose products in pairs ate all zero. Beyond these general properties, the structure of the group-algebra is not completely kuown even in the case wheu G is Abelian. For example, in the existing literature, the following questions have not been discussed :-- (1) In the decomposition of K [G] us the direct sum of simple algebras, the actual number of simple component algebras. (2) The radical of K [G] when p is a divisor of N. (3) The residue class ring of K [G] with respect to its radical when it exists. In the present paper, we consider the case when G is Abelian and we show that in this case K [G] is simply isomorphic with the residue class ring of the polynomial domain K [xi, xa, xr] with respect to the ideal (x~'--l, x~~-1, -x~, --1), where ni, na "n~ are the orders of a set of basis elements of the Abelian group G. From a study of this residue class ring, we deduce al1 the important structural properties of the Abelian group-aigebra K [G].
    [Show full text]
  • The Axiomatization of Linear Algebra: 1875-1940
    HISTORIA MATHEMATICA 22 (1995), 262-303 The Axiomatization of Linear Algebra: 1875-1940 GREGORY H. MOORE Department of Mathematics, McMaster University, Hamilton, Ontario, Canada L8S 4K1 Modern linear algebra is based on vector spaces, or more generally, on modules. The abstract notion of vector space was first isolated by Peano (1888) in geometry. It was not influential then, nor when Weyl rediscovered it in 1918. Around 1920 it was rediscovered again by three analysts--Banach, Hahn, and Wiener--and an algebraist, Noether. Then the notion developed quickly, but in two distinct areas: functional analysis, emphasizing infinite- dimensional normed vector spaces, and ring theory, emphasizing finitely generated modules which were often not vector spaces. Even before Peano, a more limited notion of vector space over the reals was axiomatized by Darboux (1875). © 1995 AcademicPress, Inc. L'algrbre linraire moderne a pour concept fondamental l'espace vectoriel ou, plus grn6rale- ment, le concept de module. Peano (1888) fut le premier ~ identifier la notion abstraite d'espace vectoriel dans le domaine de la gromrtrie, alors qu'avant lui Darboux avait drj5 axiomatis6 une notion plus 6troite. La notion telle que drfinie par Peano eut d'abord peu de repercussion, mrme quand Weyl la redrcouvrit en 1918. C'est vers 1920 que les travaux d'analyse de Banach, Hahn, et Wiener ainsi que les recherches algrbriques d'Emmy Noether mirent vraiment l'espace vectoriel ~ l'honneur. A partir de 1K la notion se drveloppa rapide- ment, mais dans deux domaines distincts: celui de l'analyse fonctionnelle o,) l'on utilisait surtout les espaces vectoriels de dimension infinie, et celui de la throrie des anneaux oia les plus importants modules etaient ceux qui sont gdnrrrs par un nombre fini d'616ments et qui, pour la plupart, ne sont pas des espaces vectoriels.
    [Show full text]
  • J. Harding, the Source of the Orthomodular Law, a Book Chapter
    THE SOURCE OF THE ORTHOMODULAR LAW John Harding 1 INTRODUCTION Beginning with Birkhoff and von Neumann [4], a central theme in quantum logic is to consider generalizations of the lattice C(H) of closed subspaces of a Hilbert space H as models for the propositions of a quantum mechanical system. Husimi [20] was the first to note that the ortholattices C(H) satisfied the following identity known as the orthomodular law: (1) A ≤ B ⇒ A ∨ (A⊥ ∧ B)=B. This fact was rediscovered several times in the 1950’s and 1960’s [23, 28, 30, 31, 35] and lead to the role of orthomodular lattices (abbreviated: omls) and orthomodular posets (abbreviated: omps) as abstract models for the propositions of a quantum mechanical system. It is instructive to see how the validity of the orthomodular law in C(H) follows in a transparent way from basic properties of Hilbert spaces. For the non-trivial containment in (1) note that if b ∈ B, then b = a1 +a2 for some unique a1 ∈ A and ⊥ ⊥ a2 ∈ A . Then if A ⊆ B we have a1 ∈ B, hence b − a1 = a2 belongs to A ∩ B, ⊥ and therefore b = a1 + a2 belongs to A ∨ (A ∧ B). Thus, the validity of the orthomodular law in C(H) follows as each vector in H can be uniquely expressed as a sum of vectors from A and A⊥. This shall be of fundamental importance to us. The orthomodular law has several equivalent formulations that highlight differ- ent aspects of its nature. We mention one of these that provides insight that will be helpful here.
    [Show full text]
  • A Service for the Physicists? BL Van Der
    A service for the physicists? B. L. van der Waerden's early contributions to quantum mechanics¤ Martina R. Schneider SÄachsische Akademie der Wissenschaften zu Leipzig Geschichte der Naturwissenschaften und der Mathematik Karl-Tauchnitz-Str. 1, 04107 Leipzig, Germany email: [email protected] Bartel Leendert van der Waerden (1903-1996) was a scientist with a wide range of interests. He contributed to invariant theory, algebraic geometry, algebra, topology, statistics and probability theory, as well as to physics and to the history of mathematics, astronomy and physics.1 In this paper I will try to cha- racterize his early contributions to quantum mechanics which he wrote around 1930.2 All of these deal with group theory, a mathematical theory which was well established at the time but whose application to quantum mechanics was quite controversial. How did van der Waerden come to publish something in this ¯eld? What kind of mathematics did he use? What was his stance in the debate about the \group plague"? In order to give an idea in which direction these questions might be answered three examples from his papers will be discussed. These examples concern van der Waerden's development of the spinor calculus, his introduction to represen- tation theory by a concept called group with operators, and his treatment of Slater's method, a method which explicitly was aimed at avoiding group the- ory. Local networks (in GÄottingen,the Netherlands and Leipzig) which were a stimulus for van der Waerden's work in physics and, to some extent, had an influence on the direction of his research are sketched.
    [Show full text]
  • Introduction to Vector Spaces, Vector Algebras, and Vector Geometries
    Introduction to Vector Spaces, Vector Algebras, and Vector Geometries Richard A. Smith October 14, 2011 Abstract An introductory overview of vector spaces, algebras, and linear geometries over an arbitrary commutative field is given. Quotient spaces are emphasized and used in constructing the exterior and the symmetric algebras of a vector space. The exterior algebra of a vector space and that of its dual are used in treating linear geometry. Scalar product spaces, orthogonality, and the Hodge star based on a general basis are treated. Contents 1 Fundamentals of Structure 5 1.1 WhatisaVectorSpace? ..................... 5 1.2 SomeVectorSpaceExamples . 6 1.3 Subspace, Linear Combination and Span . 6 arXiv:1110.3350v1 [math.HO] 14 Oct 2011 1.4 Independent Set, Basis and Dimension . 7 1.5 SumandDirectSumofSubspaces. 12 1.6 Problems.............................. 16 2 Fundamentals of Maps 18 2.1 StructurePreservationandIsomorphism . 18 2.2 Kernel,LevelSetsandQuotientSpace . 20 2.3 ShortExactSequences . 24 2.4 Projections and Reflections on V = W ⊕ X ........... 26 2.5 Problems.............................. 28 1 3 More on Maps and Structure 30 3.1 FunctionSpacesandMapSpaces . 30 3.2 DualofaVectorSpace,DualofaBasis. 30 3.3 Annihilators............................ 32 3.4 DualofaMap........................... 33 3.5 TheContragredient. .. .. 34 3.6 ProductSpaces .......................... 34 3.7 MapsInvolvingProducts. 35 3.8 Problems.............................. 38 4 Multilinearity and Tensoring 40 4.1 Multilinear Transformations . 40 4.2 FunctionalProductSpaces . 41 4.3 FunctionalTensorProducts . 42 4.4 TensorProductsinGeneral . 43 4.5 Problems.............................. 49 5 Vector Algebras 50 5.1 The New Element: Vector Multiplication . 50 5.2 QuotientAlgebras......................... 51 5.3 AlgebraTensorProduct . 52 5.4 TheTensorAlgebrasofaVectorSpace . 53 5.5 TheExteriorAlgebraofaVectorSpace. 54 5.6 The Symmetric Algebra of a Vector Space .
    [Show full text]
  • INEQUALITIES of CRITICAL POINT THEORY1 a Purpose of Critical
    INEQUALITIES OF CRITICAL POINT THEORY1 EVERETT PITCHER A purpose of critical point theory is the counting of critical points of functions. Principal theorems in the subject state in precise terms that topological complexity of the underlying space is reflected in the existence and nature of critical points of any smooth real-valued function defined on the space. The initial development of critical point theory is peculiarly the work of one man, Marston Morse. Readers of the fundamental papers of Morse,2 particularly his Calculus of Variations in the Large [MM1 ], have found them difficult not only because of the intrinsic difficulties but for another reason. The work was done at a time when the requi­ site algebraic topology was not so adequately or systematically de­ veloped as at present. As a consequence, a substantial part of his ex­ position is concerned with proof of purely topological results in the special context of critical point theory. Thus part of his exposition deals with various aspects of the exactness of the homology sequence of a pair of spaces and part with the relation between deformations and the homomorphisms of homology theory. It will be supposed that the reader knows a modest amount of homology theory, which may be summarized in the statement that the axioms of Eilenberg and Steenrod [E-Sl ] are theorems in singular homology theory. In this paper an account is given of a specific problem in critical point theory, namely the problem of a smooth function on a Rie- mannian manifold. The form of statements is chosen in such fashion that they may be extended reasonably to a wider class of problems.
    [Show full text]
  • Group Theory
    Group Theory J.S. Milne S3 Â1 2 3Ã r D 2 3 1 Â1 2 3Ã f D 1 3 2 Version 4.00 June 23, 2021 The first version of these notes was written for a first-year graduate algebra course.Asin most such courses, the notes concentrated on abstract groups and, in particular, on finite groups. However, it is not as abstract groups that most mathematicians encounter groups, but rather as algebraic groups, topological groups, or Lie groups, and it is not just the groups themselves that are of interest, but also their linear representations. It is my intention (one day) to expand the notes to take account of this, and to produce a volume that, while still modest in size (c200 pages), will provide a more comprehensive introduction to group theory for beginning graduate students in mathematics, physics, and related fields. BibTeX information @misc{milneGT, author={Milne, James S.}, title={Group Theory (v4.00)}, year={2021}, note={Available at www.jmilne.org/math/}, pages={139} } Please send comments and corrections to me at jmilne at umich dot edu. v2.01 (August 21, 1996). First version on the web; 57 pages. v2.11 (August 29, 2003). Revised and expanded; numbering; unchanged; 85 pages. v3.00 (September 1, 2007). Revised and expanded; 121 pages. v3.16 (July 16, 2020). Revised and expanded; 137 pages. v4.00 (June 23, 2021). Made document (including source code) available under Creative Commons licence. The multiplication table of S3 on the front page was produced by Group Explorer. Version 4.0 is published under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence (CC BY-NC-SA 4.0).
    [Show full text]
  • Intersection Theory of Manifolds with Operators with Applications to Knot Theory Author(S): Richard C
    Annals of Mathematics Intersection Theory of Manifolds With Operators with Applications to Knot Theory Author(s): Richard C. Blanchfield Source: The Annals of Mathematics, Second Series, Vol. 65, No. 2 (Mar., 1957), pp. 340-356 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/1969966 . Accessed: 30/04/2011 08:58 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=annals. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics. http://www.jstor.org ANNALS OF MATHEMATICS Vol.
    [Show full text]
  • Incomplete Notes on Fraleigh's Abstract Algebra (4Th Ed.)
    Incomplete Notes on Fraleigh’s Abstract Algebra (4th ed.) Afra Zomorodian December 12, 2001 Contents 1 A Few Preliminaries 2 1.1 Mathematics and Proofs . 2 1.2 Sets and Equivalence Relations . 2 1.3 Mathematical Induction . 3 1.4 Complex and Matrix Arithmetic . 3 2 Introduction to Groups 4 2.1 Binary Operations . 4 2.2 Groups . 4 2.3 Subgroups . 5 2.4 Groups of Permutations . 6 2.5 Orbits, Cycles, and the Alternating Group . 7 2.6 Cyclic Groups . 8 2.7 Cosets and the Theorem of Lagrange . 8 2.8 Direct Products and Finitely Generated Abelian Groups . 9 3 Homomorphisms and Factor Groups 11 3.1 Homomorphisms . 11 3.2 Isomorphism and Cayley’s Theorem . 12 3.3 Factor Groups . 13 3.4 Factor-Group Computations and Simple Groups . 14 3.5 Series of Groups . 14 3.6 Groups in Geometry, Analysis, and Art . 15 4 Advanced Group Theory 16 4.1 Isomorphism Theorems: Proof of the Jordan-H¨older Theorem . 16 4.2 Group Action on a Set . 17 4.3 Application of G-Sets to Counting . 17 4.4 Sylow Theorems . 17 4.5 Applications of the Sylow Theory . 18 4.6 Free Abelian Groups . 19 4.7 Free Groups . 20 4.8 Group Presentations . 21 1 5 Introduction to Rings and Fields 22 5.1 Rings and Fields . 22 5.2 Integral Domains . 23 5.3 Fermat’s and Euler’s Theorems . 24 5.4 The Field of Quotients of an Integral Domain . 25 5.5 Rings of Polynomials . 26 5.6 Factorization of Polynomials over a Field .
    [Show full text]
  • |||GET||| Elements of Quasigroup Theory and Applications 1St Edition
    ELEMENTS OF QUASIGROUP THEORY AND APPLICATIONS 1ST EDITION DOWNLOAD FREE Victor Shcherbacov | 9781498721554 | | | | | The Mathematics of Finite Elements and Applications X (MAFELAP 1999) Cockburn, C. Elements of Quasigroup Theory and Applications 1st edition 30 September Powered by. Mesh shape and anisotropic elements: theory and practice T. From Wikipedia, the free encyclopedia. Reviews 0. Equivalents of the Axiom of Choice, II. Hillebrand, D. PhD Thesis, Harvard University Sternberg S. Snyder, L. Academic Press, New York-London Issue Date : 01 August In fact, any loop which satisfies any two of the above four identities has the inverse property and therefore satisfies all four. Marsaglia, G. The file will be sent to your Kindle Elements of Quasigroup Theory and Applications 1st edition. The empty set equipped with the empty binary operation satisfies this definition of a quasigroup. Ring -like. A finite volume method for viscous compressible flows in low and high speed applications J. On finite element methods for coupling eigenvalue problems H. Universitaet Dortmund, Fachbereich Mathematik Bodenhofer, U. Phillips, A. Glowinski et al. See small Latin squares and quasigroups. Analysis and numerics of strongly degenerate convection-diffusion problems modelling sedimentation-consolidation processes R. Buchberger, B. Rubin A computer algebra system for polynomial computations. Post a Review. Download preview PDF. In other words: Multiplication and division in either order, one after the other, on the same side by the same element, have no net effect. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle. Be the first to write a review. Verify your identity ENW EndNote. Download citation. Long overshadowed by general group theory, quasigroups have become increasingly important in combinatorics, cryptography, algebra, and physics.
    [Show full text]
  • DECOMPOSITIONS in QUANTUM LOGIC 1. Introduction A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 348, Number 5, May 1996 DECOMPOSITIONS IN QUANTUM LOGIC JOHN HARDING Abstract. We present a method of constructing an orthomodular poset from a relation algebra. This technique is used to show that the decompositions of any algebraic, topological, or relational structure naturally form an orthomod- ular poset, thereby explaining the source of orthomodularity in the ortholattice of closed subspaces of a Hilbert space. Several known methods of producing orthomodular posets are shown to be special cases of this result. These in- clude the construction of an orthomodular poset from a modular lattice and the construction of an orthomodular poset from the idempotents of a ring. Particular attention is paid to decompositions of groups and modules. We develop the notion of a norm on a group with operators and of a projection on such a normed group. We show that the projections of a normed group with operators form an orthomodular poset with a full set of states. If the group is abelian and complete under the metric induced by the norm, the projections form a σ-complete orthomodular poset with a full set of countably additive states. We also describe some properties special to those orthomodular posets con- structed from relation algebras. These properties are used to give an example of an orthomodular poset which cannot be embedded into such a relational orthomodular poset, or into an orthomodular lattice. It had previously been an open question whether every orthomodular poset could be embedded into an orthomodular lattice. 1. Introduction A cornerstone of the quantum logic approach to quantum mechanics is the fact that the closed subspaces of a Hilbert space satisfy the orthomodular law if A B,thenB=A (A⊥ B).
    [Show full text]