The Rumen Specific Bacteriome in Dry Dairy Cows and Its Possible

Total Page:16

File Type:pdf, Size:1020Kb

The Rumen Specific Bacteriome in Dry Dairy Cows and Its Possible animals Article The Rumen Specific Bacteriome in Dry Dairy Cows and Its Possible Relationship with Phenotypes 1, 2,3, 2 2 4 Shih-Te Chuang y, Shang-Tse Ho y, Po-Wen Tu , Kuan-Yi Li , Yu-Lun Kuo , Jia-Shian Shiu 5, Sheng-Yao Wang 2 and Ming-Ju Chen 2,* 1 Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; [email protected] 2 Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; [email protected] (S.-T.H.); [email protected] (P.-W.T.); [email protected] (K.-Y.L.); [email protected] (S.-Y.W.) 3 Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan 4 Biotools Co., Ltd., New Taipei City 221, Taiwan; [email protected] 5 Hengchun Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung 946, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +88-6-2-3366-4173 These authors contributed equally to this work. y Received: 13 August 2020; Accepted: 29 September 2020; Published: 1 October 2020 Simple Summary: The aim of this study was to investigate the importance of the relationships among hosts, microbiota, and diet composition in dry dairy cows. Therefore, the composition of the rumen microbiome in cows from three dairy farms was investigated to identify core bacteria contributing to various physiological roles during rumen fermentation in dry dairy cows. Our results revealed that the ruminal fluid in dry dairy cows from different regional farms had core rumen microbiota that could be clearly distinguished from that of cows of the other farms. Abstract: Most microbiome studies of dairy cows have investigated the compositions and functions of rumen microbial communities in lactating dairy cows. The importance of the relationships among hosts, microbiota, diet composition, and milk production remains unknown in dry dairy cows. Thus, in the present study, the composition of the rumen microbiome in cows from three dairy farms was investigated to identify core bacteria contributing to various physiological roles during rumen fermentation in dry dairy cows. The results indicated that ruminal fluid in dry dairy cows from different regional farms had core rumen microbiota that could be clearly distinguished from that of cows of the other farms. Further identification of key microorganisms associated with each farm revealed that Prevotella, Methanobrevibacter, Pseudobutyrivibrio, Ruminococcus, Bacteroides, and Streptococcus were major contributors. Spearman’s correlation indicated that the abundance of genera such as Prevotella and Ruminococcus in dry dairy cows could indicate milk yield in the previous lactating period. Functional pathway analysis of the rumen bacterial communities demonstrated that amino acid metabolism and carbohydrate metabolism were the major pathways. Our findings provide knowledge of the composition and predicted functions of rumen microbiota in dry dairy cows from regional farms, which underscore the importance of the relationships among hosts, microbiota, diet composition, and milk production. Keywords: dry period; rumen microbiota; physiological roles; Prevotella; Ruminococcus Animals 2020, 10, 1791; doi:10.3390/ani10101791 www.mdpi.com/journal/animals Animals 2020, 10, 1791 2 of 15 1. Background The rumen, the forestomach of ruminants, harbors bacteria, archaea, fungi, and ciliate protozoa [1]. An indispensable function of these microorganisms is to break down plant polymers into volatile fatty acids through various fermentation pathways to be absorbed and used by host animals [1,2]. The composition and function of rumen microbial communities are not only affecting growth and milk production but are also related to the host health and nutrient utilization in dairy cattle [3,4]. The unique metabolites (e.g., saturated fatty acids, organic acids, amine, or polysaccharide) produced by rumen microbes may play a vital role in ruminant physiology [5]. Jewell et al. [6] reported that some rumen bacteria are associated with milk production efficiency and ketosis. Many factors, including diet, species, age, and geographic location, can affect the composition and function of rumen microbiota [6,7]. Furthermore, the acidosis, subacidosis, and metabolic dysfunction of the rumen can change the composition and function of rumen microbiota [8–10]. Given the importance of rumen microbial communities on ruminant health and productivity, many researchers have attempted to manipulate rumen microbiota through various strategies, such as using chemical agents and enzymes as feed additives or probiotic supplements. However, modification of rumen microbial compositions in adult ruminants appears difficult. Changes in rumen microbiota from exogenous factors can be rapidly restored by eliminating the influential factors [11], but little is known of the ecological and physiological roles of predominant core bacteria in the rumen microbial ecosystem. In addition, the lactation cycle is split into lactation and dry periods. Most studies have focused on investigating rumen microbiota during lactation; for instance, studies have assessed how rumen microbiota respond to exogenous butyrate [12] and the composition of rumen microbiota [13,14]. The dry period is a crucial rest period for cows in which new hormonal stimulation is gained for subsequent lactation. The precise interaction between a rumen microbial community and the host animal should be investigated for the whole lactation cycle to investigate the possibility of maintaining the health and productivity of ruminants by manipulating rumen microbial composition. Nevertheless, limited information has been reported concerning rumen microbiomes and their functions during dry periods. Thus, in the present study, the composition of rumen microbiomes from three dairy farms in the northern, middle, and southern regions of Taiwan, respectively, were investigated. We identified core bacteria that contribute to various physiological roles during rumen fermentation in dry cows. The exogenous factors affecting rumen microbiomes were also studied. Fundamental knowledge of rumen core microbiomes and their relationship to physiological functionality in rumen microbial ecosystems during dry periods can provide insight into potential manipulation of rumen microbiota to enhance dairy performance, such as milk production and cow health. 2. Methods All experimental procedures were conducted according to guidelines from the Institutional Animal Care and Use Committee of National Taiwan University (IACUC number: NTU105-EL-00022). The owners’ consent was verbally confirmed as part of routine veterinary operation. 2.1. Animal Sources and Sampling All experimental procedures were conducted according to guidelines from the Institutional Animal Care and Use Committee of National Taiwan University (IACUC number: NTU105-EL-00022). In total, 15 Holstein cows in the second week of their dry periods from three farms were sampled in Taipei (experimental farm of the National Taiwan University, Farm A, N = 5), Changhua (private farm, Farm B, N = 5), and Tainan (Lin Fengying’s daily farm, Farm C, N = 5). The animals were fed with a mixed forage–concentrate diet with different diet compositions among the farms (Farm A: 10.71% crude protein (CP) and 60.90% crude fiber (CF); Farm B: 9.92% CP and 66.79% CF; Farm C: 13.20% CP and 43.08% CF). The forage-to-concentrate ratios (F:C) in diet dry matter (DM) basis of Farms A, B and C were 85.7:14:3, 88.8:11.2, and 67.5:32.5, respectively (Table1). Average milk production during the Animals 2020, 10, 1791 3 of 15 previous lactating period for the cows of Farms A, B, and C were 24.1 8.3, 22.5 7.6, and 20.1 8.5 kg, ± ± ± respectively. The cows’ entire mid-rumen fluid contents (approximately 200 mL) were collected using a stainless-steel stomach tube by a veterinarian, and their entire rumen fluid volume was filtered with gauze to remove solids. After this study, all experimental animals were released and then maintained by the original farms. Table 1. The dietary information of dry cows in different farms. Farm A Major ingredient Dry cow concentrate, Bermuda grass F:C (DM) 85.7:14:3 Crude protein (% DM) 10.71 Crude fiber (% DM) 60.90 Calcium (% DM) 0.60 Phosphorus (% DM) 0.25 Farm B Major ingredient Dry cow concentrate, Bermuda grass, Pennisetum grass F:C (DM) 88.8:11.2 Crude protein (% DM) 9.92 Crude fiber (% DM) 66.79 Calcium (% DM) 0.66 Phosphorus (% DM) 0.34 Farm C Major ingredient Dry cow concentrate, Bermuda grass, corn silage, oat grass F:C ratio 67.5:32.5 Crude protein (% DM) 13.20 Crude fiber (% DM) 43.08 Calcium (% DM) 0.45 Phosphorus (% DM) 0.39 F:C = forage-to-concentrate ratios; DM = dry matter. 2.2. DNA Extraction and Next-Generation Sequencing Rumen samples were immediately frozen in a 80 C freezer and then freeze-dried. DNA − ◦ was extracted from 100 mg of homogenized rumen sample through bead beating followed by phenol–chloroform extraction [5]. The resulting solution was precipitated with ice-cold isopropanol (Sigma-Aldrich, St. Louis, MO, USA) to obtain the DNA pellet. The pellet was washed with 70% ethanol twice and suspended in 200 µL of ddH2O. The DNA was quantified using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA) and stored in a 20 C freezer until − ◦ analyzed. For next-generation sequencing (NGS), the 16S ribosomal RNA (rRNA) gene regions were amplified for further analysis. The primer set used in this study was 16S, 515F, and 806R for amplification of the V4 16S rRNA gene region. The PCR reaction was conducted in a PCR machine (Biometra T3000 thermocycler, Analytik Jena, Göttingen, Germany); the PCR conditions are shown in Supplementary Materials Table S1. 2.3. Bioinformatics Amplicon sequencing was performed using the paired-end Illumina HiSeq platform to generate 250 bp paired-end raw reads, and the entire set of paired-end reads was assembled using FLASH Animals 2020, 10, 1791 4 of 15 v.1.2.7 [15]. Demultiplexing was conducted from barcode identification. For quality control, low-quality reads (Q < 20) were discarded in the QIIME 1.9.1 pipeline [16].
Recommended publications
  • Effects of Dietary Supplementation with Hainanmycin on Protein Degradation and Populations of Ammonia-Producing Bacteria in Vitro
    668 Asian Australas. J. Anim. Sci. Vol. 26, No. 5 : 668-674 May 2013 http://dx.doi.org/10.5713/ajas.2012.12589 www.ajas.info pISSN 1011-2367 eISSN 1976-5517 Effects of Dietary Supplementation with Hainanmycin on Protein Degradation and Populations of Ammonia-producing Bacteria In vitro Z. B. Wang1,2,a, H. S. Xin1,a, M. J. Wang1, Z. Y. Li1, Y. L. Qu2, S. J. Miao2 and Y. G. Zhang1,* 1 College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China ABSTRACT: An in vitro fermentation was conducted to determine the effects of hainanmycin on protein degradation and populations of ammonia-producing bacteria. The substrates (DM basis) for in vitro fermentation consisted of alfalfa hay (31.7%), Chinese wild rye grass hay (28.3%), ground corn grain (24.5%), soybean meal (15.5%) with a forage: concentrate of 60:40. Treatments were the control (no additive) and hainanmycin supplemented at 0.1 (H0.1), 1 (H1), 10 (H10), and 100 mg/kg (H100) of the substrates. After 24 h of fermentation, the highest addition level of hainanmycin decreased total VFA concentration and increased the final pH. The high addition level of hainanmycin (H1, H10, and H100) reduced (p<0.05) branched-chain VFA concentration, the molar proportion of acetate and butyrate, and ratio of acetate to propionate; and increased the molar proportion of propionate, except that for H1 the in molar proportion of acetate and isobutyrate was not changed (p>0.05). After 24 h of fermentation, H10 and H100 increased (p<0.05) concentrations of peptide nitrogen and AA nitrogen and proteinase activity, and decreased (p<0.05) NH3-N concentration and deaminase activity compared with control.
    [Show full text]
  • Comparison of Enzymatic Activities and Proteomic Profiles Of
    Sechovcová et al. Proteome Science (2019) 17:2 https://doi.org/10.1186/s12953-019-0150-3 RESEARCH Open Access Comparison of enzymatic activities and proteomic profiles of Butyrivibrio fibrisolvens grown on different carbon sources Hana Sechovcová1,5* , Lucie Kulhavá2,4, Kateřina Fliegerová1, Mária Trundová3, Daniel Morais6, Jakub Mrázek1 and Jan Kopečný1 Abstract Background: The rumen microbiota is one of the most complex consortia of anaerobes, involving archaea, bacteria, protozoa, fungi and phages. They are very effective at utilizing plant polysaccharides, especially cellulose and hemicelluloses. The most important hemicellulose decomposers are clustered with the genus Butyrivibrio.As the related species differ in their range of hydrolytic activities and substrate preferences, Butyrivibrio fibrisolvens was selected as one of the most effective isolates and thus suitable for proteomic studies on substrate comparisons in the extracellular fraction. The B. fibrisolvens genome is the biggest in the butyrivibria cluster and is focused on “environmental information processing” and “carbohydrate metabolism”. Methods: The study of the effect of carbon source on B. fibrisolvens 3071 was based on cultures grown on four substrates: xylose, glucose, xylan, xylan with 25% glucose. The enzymatic activities were studied by spectrophotometric and zymogram methods. Proteomic study was based on genomics, 2D electrophoresis and nLC/MS (Bruker Daltonics) analysis. Results: Extracellular β-endoxylanase as well as xylan β-xylosidase activities were induced with xylan. The presence of the xylan polymer induced hemicellulolytic enzymes and increased the protein fraction in the interval from 40 to 80 kDa. 2D electrophoresis with nLC/MS analysis of extracellular B. fibrisolvens 3071 proteins found 14 diverse proteins with significantly different expression on the tested substrates.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Biotechnological Approaches to Manure Nutrient Management
    COUNCIL FORFOR AGRICULTURALAGRICULTURAL SCIENCE SCIENCE AND AND TECHNOLOGY—1 TECHNOLOGY NUMBER 33 JULY 2006 ANIMAL AGRICULTURE'S FUTURE THROUGH BIOTECHNOLOGY, PART 4 BIOTECHNOLOGICAL APPROACHES TO MANURE NUTRIENT MANAGEMENT TASK FORCE MEMBERS: Xingen Lei, Chair, Department of Animal Science, Cornell Univer- neering. This type of technol- INTRODUCTION sity, Ithaca, New York; John P. Blake, Depart- Food animals are fed and ogy may be applied to de- produced for the purpose of ment of Poultry Science, Auburn University, crease total manure mass or feeding humans. Manure from Auburn, Alabama; Cecil W. Forsberg, Depart- concentrations of P, N, am- these animals is a valuable ment of Microbiology, University of Guelph, monia (NH3), trace elements, source of fertilizer, but con- Ontario, Canada; Danny G. Fox, Department of and other factors. Targeted modifications centrations of manure nutri- Animal Science, Cornell University, Ithaca, New 1 can be based strategically on ents such as phosphorus (P) , York; Elizabeth Grabau, Department of Plant nitrogen (N), and metals may plants, animals, ruminal and Pathology, Physiology, and Weed Science, Vir- exceed needs for plant growth intestinal microorganisms, and cause environmental pol- ginia Tech, Blacksburg; Zdzislaw Mroz, Ani- and diets. The plant-based lution. Thus, managing live- mal Sciences Group, Division of Nutrition and approaches include genetic stock manure nutrients has Food, Wageningen, The Netherlands; Alan L. and chemical modifications of been a task shared by those Sutton, Department of Animal Sciences, Purdue feeds (e.g., overexpressing hydrolytic enzymes such as interested in animal nutrition, University, West Lafayette, Indiana; William R. agronomy, and environmental phytase in seeds, decreasing Walker, DPI Global, Fort Dodge, Iowa; Ken- protection.
    [Show full text]
  • Metagenomic Surveys of Gut Microbiota
    Accepted Manuscript Metagenomic Surveys of Gut Microbiota Rahul Shubhra Mandal, Sudipto Saha, Santasabuj Das PII: S1672-0229(15)00054-6 DOI: http://dx.doi.org/10.1016/j.gpb.2015.02.005 Reference: GPB 159 To appear in: Genomics, Proteomics & Bioinformatics Received Date: 8 July 2014 Revised Date: 10 February 2015 Accepted Date: 26 February 2015 Please cite this article as: R.S. Mandal, S. Saha, S. Das, Metagenomic Surveys of Gut Microbiota, Genomics, Proteomics & Bioinformatics (2015), doi: http://dx.doi.org/10.1016/j.gpb.2015.02.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Metagenomic Surveys of Gut Microbiota 2 3 Rahul Shubhra Mandal1,a, Sudipto Saha2,*,b, Santasabuj Das1,3,*,c 4 5 1Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, Kolkata 6 700010, India 7 2Bioinformatics Centre, Bose Institute, Kolkata 700054, India 8 3Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata 9 700010, India 10 11 *Corresponding authors. 12 E-mail: [email protected] (Das S), [email protected] (Saha S). 13 Running title: Mandal RS et al / Metagenomic Analysis of Gut Microbiota 14 15 aORCID: 0000-0001-8939-3362.
    [Show full text]
  • Characterization of Antibiotic Resistance Genes in the Species of the Rumen Microbiota
    ARTICLE https://doi.org/10.1038/s41467-019-13118-0 OPEN Characterization of antibiotic resistance genes in the species of the rumen microbiota Yasmin Neves Vieira Sabino1, Mateus Ferreira Santana1, Linda Boniface Oyama2, Fernanda Godoy Santos2, Ana Júlia Silva Moreira1, Sharon Ann Huws2* & Hilário Cuquetto Mantovani 1* Infections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes 1234567890():,; among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pres- sure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health. 1 Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. 2 Institute for Global Food Security, School of Biological
    [Show full text]
  • Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species Within the Clostvidium Subphylum of the Gram-Positive Bacteria
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1996, p. 195-199 Vol. 46, No. 1 0020-7713/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species within the Clostvidium Subphylum of the Gram-Positive Bacteria ANNE WILLEMS," MONICA AMAT-MARCO, AND MATTHEW D. COLLINS Department of Microbial Physiology, Institute of Food Research, Reading Laboratoy, Reading RG6 6BZ, United Kingdom The phylogenetic positions of 40 Butyrivibrio strains were determined by performing a comparative sequence analysis of the 165 rRNA genes of these organisms. We found that all of the strains which we studied belong to cluster XIVa (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 442312-826, 1994) of the Clostridium subphylum of the gram-positive bacteria, which also includes several Clostridium, Coprococcus,Eubacterium, and Rumino- coccus species. We also found that the Butyrivibrio strains which we examined were genotypically heterogeneous and exhibited 12 distinct rRNA sequence types. The 12 rRNA sequence types formed three distinct lineages in cluster XIVa, which were separate from each other and from all other species belonging to this cluster. One lineage consisted of strains which exhibited a single rRNA type and corresponded to the species Butyrivibrio crossotus. The second lineage consisted of 12 strains designated Butyrivibrio Jibrisolvens which exhibited seven distinct rRNA sequence types. The type strain of B. Jibrisolvens was a member of this lineage, but its position was peripheral. The third lineage comprised 26 B.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Fermented Soybean Meal Affects the Ruminal Fermentation and The
    www.nature.com/scientificreports OPEN Fermented soybean meal afects the ruminal fermentation and the abundance of selected bacterial species in Holstein calves: a multilevel analysis Leila Kaviani Feizi1, Sabihe Soleymanian Zad2,3, Seyed Amir Hossein Jalali3,4, Hassan Rafee1, Masoud Boroumand Jazi5, Khaled Sadeghi1 & Rasoul Kowsar 1* The efect of soybean meal (SBM) replacement with fermented SBM (FSBM) on ruminal fermentation and bacterial abundance in Holstein calves was investigated in this study. Thirty nine calves were randomized to: (1) control: 27% SBM + 0% FSBM (FSBM0, n = 13); (2) 18% SBM + 9% FSBM (FSBM9, n = 13); and (3) 13.5% SBM + 13.5% FSBM (FSBM13, n = 13). SBM contained a greater amount of large peptides containing 3 to 10 amino acids (AAs), while FSBM had a greater amount of ammonia nitrogen (NH3–N), free AAs, and small peptides containing 2 to 3 AAs. The calves fed FSBM13 had the lowest acetic acid, NH3–N, and the ratio of acetate to propionate, with the greatest concentration of caproic acid, valeric acid and isovaleric acid in ruminal fuid. Compared to those fed FSBM9 or FSBM13, the calves fed FSBM0 had the greatest proportion of Butyrivibrio fbrisolvens and Ruminococcus albus in rumen fuid. However, the ruminal abundance of Prevotella ruminicola in calves fed FSBM13 was greater than in calves fed FSBM0. Network analysis showed that the abundance of the Ruminococcus albus was associated with large peptides, and butyric acid was correlated with small peptide. Taken together, our fndings suggest that FSBM may have the potential to boost calf performance by changing the fermentation products and the relative abundance of some members of the bacterial community in the rumen.
    [Show full text]
  • Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins
    toxins Article Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins Noshin Daud 1, Valerie Currie 1 , Gary Duncan 1, Freda Farquharson 1, Tomoya Yoshinari 2, Petra Louis 1 and Silvia W. Gratz 1,* 1 Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; [email protected] (N.D.); [email protected] (V.C.); [email protected] (G.D.); [email protected] (F.F.); [email protected] (P.L.) 2 Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan; [email protected] * Correspondence: [email protected] Received: 21 September 2020; Accepted: 9 October 2020; Published: 13 October 2020 Abstract: Mycotoxins are important food contaminants that commonly co-occur with modified mycotoxins such as mycotoxin-glucosides in contaminated cereal grains. These masked mycotoxins are less toxic, but their breakdown and release of unconjugated mycotoxins has been shown by mixed gut microbiota of humans and animals. The role of different bacteria in hydrolysing mycotoxin-glucosides is unknown, and this study therefore investigated fourteen strains of human gut bacteria for their ability to break down masked mycotoxins. Individual bacterial strains were incubated anaerobically with masked mycotoxins (deoxynivalenol-3-β-glucoside, DON-Glc; nivalenol-3-β-glucoside, NIV-Glc; HT-2-β-glucoside, HT-2-Glc; diacetoxyscirpenol-α-glucoside, DAS-Glc), or unconjugated mycotoxins (DON, NIV, HT-2, T-2, and DAS) for up to 48 h. Bacterial growth, hydrolysis of mycotoxin-glucosides and further metabolism of mycotoxins were assessed.
    [Show full text]
  • MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
    BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................
    [Show full text]
  • Using a Different Growth Medium
    doi:10.2478/v10014-011-0009-5 COBISS: 1.01 Agris category code: L51 USING A DIFFERENT GROWTH MEDIUM GREATLY IMPROVES DISTINCTION OF Butyrivibrio fibrisolvens AND Pseudobutyrivibrio xylanivorans STRAINS BY THE CELLULAR FATTY ACIDS AND ALDEHYDES PROFILES Maša ZOREC 1, Maša VODOVNIK 2, Romana MARINŠEK LOGAR 2 Received October 22, 2010; accepted December 21, 2010. Delo je prispelo 22. oktobra 2010, sprejeto 21. decembra 2010. Using a different growth medium greatly improves distinction Uporaba različnih gojišč bistveno olajša ločevanje sevov Bu- of Butyrivibrio fibrisolvens and Pseudobutyrivibrio xylanivo- tyrivibrio fibrisolvens in Pseudobutyrivibrio xylanivorans na rans strains by the cellular fatty acids and aldehydes profiles osnovi profilov maščobnih kislin in aldehidov A total of 11 ruminal strains currently assigned to Butyr- Skupno smo gojili 11 vampnih sevov iz vrst Butyrivibrio ivibrio fibrisolvens and Pseudobutyrivibrio xylanivorans were fibrisolvens in Pseudobutyrivibrio xylanivorans v dveh različnih cultivated in two different media, rumen fluid containing M2 gojiščih: v M2 z vampnim sokom in v M330 z mešanico krat- and short-chain fatty acid (SCFA) containing M330, and their koverižnih maščobnih kislin (SCFA). S plinsko kromatografijo cellular fatty acid methyl esters (FAME) and dimethylacetals smo analizirali njihove metilne estre celičnih maščobnih kislin (DMA) were analyzed using gas chromatography. A compari- (FAME) in dimetilacetale (DMA). Primerjava sestave FAME/ son of the FAME/DMA compositions revealed that the dif- DMA je razkrila, da razlika v vsebnosti SCFA v gojišču pov- ference in SCFA contents in the growth medium induced a zroči izrazit kvantitativen učinek na deleže celičnih razvejanih pronounced quantitative effect on the cellular branched-chain maščobnih kislin in aldehidov le pri sevih vrste P.
    [Show full text]