Galileo's Precursors

Total Page:16

File Type:pdf, Size:1020Kb

Galileo's Precursors Pierre Maurice Marie Duhem Alan Aversa Galileo’s Precursors Translation of Studies on Leonardo da Vinci (vol. 3)∗ June 29, 2018 Springer ∗Duhem (1906) To my wife, who made this translation possible, to the Blessed Virgin Mother, and to the Holy Trinity, Who makes all things possible Foreword Note on the Translation Everything translated from the original French of Duhem (1906). Additions in [brackets] belong to the translator. Alan Aversa June 29, 2018 ix Acknowledgements The translator would like to thank Gery and Rebecca Aversa for helping to make this work open access. xi Preface To the third series of our Studies on Leonardo da Vinci, we give a subtitle: Galileo’s Parisian Precursors. This subtitle announces the idea of which our previous stud- ies had already discovered a few aspects and which our new researches place in full light. The Science of mechanics inaugurated by Galileo—by his followers, by his disciples Baliani, Torricelli, Descartes, Beeckman, Gassendi—is not a creation; modern intelligence did not produce it from the very start and from all the pieces which reading the art of Archimedes of applying geometry to natural effects had re- vealed to it. Galileo and his contemporaries used the mathematical skill acquired in the trade of the geometers of Antiquity to clarify and develop a mechanical Science of which the Christian Middle Ages had posed the principles and the most essential propositions. The physicists who taught in the 14th century at the University of Paris had designed this Mechanics by taking observation as their guide; they had sub- stituted it for the Dynamics of Aristotle, convinced of its ineffectualness to “save the phenomena.” At the time of the Renaissance, the superstitious archaism, where the wit of the Humanists and the Averroist routine of a retrograde Scholasticism are complacent, rejected this doctrine of the “Moderns.” The reaction was strong, particularly in Italy, against the Dynamics of the “Parisians,” in favour of the in- admissible dynamics of the Stagirite. But, despite stubborn resistance, the Parisian tradition found, outside schools as well as in Universities, masters and scholars to maintain and develop it. It is of this Parisian tradition that Galileo and his followers were heirs. When we see the science of Galileo triumph over the obstinate Peripateti- cism of Gremonini, we believe, uninformed in the history of human thought, that we are witnessing the victory of the young modern Science over the medieval Philoso- phy, obstinate in its psittacism; in truth, we behold the long-prepared triumph of the science that was born in Paris in the 14th century on the doctrines of Aristotle and Averroes, revived by the Italian Renaissance. No movement can perdure if it is not maintained by the continuous action of a motive power, directly and immediately applied to the mobile. This is the axiom on which the whole Dynamics of Aristotle rests. According to this principle, the Stagirite wants to apply to the arrow that continues to fly after leaving the bow a motive power which carries it; he believes this power xiii xiv Preface is found in the disturbed air; it is the air, hit by the hand or by the ballistic machine, which supports and guides the projectile. This assumption, which seems to push its improbability even to ridicule, seems to have been admitted almost unanimously by the physicists of Antiquity; one of them spoke out clearly against it, and he, in the last years of Greek philosophy, is, by his Christian faith, almost separated from this Philosophy; we have named John of Alexandria, nicknamed Philoponus. After showing what was unacceptable in the Peripatetician theory of the motion of projectiles, John Philoponus declares that the arrow continues to move without any mover applied to it, because the rope of the bow has created an energy that plays the role of the motive force. The last thinkers of Greece and even Arab philosophers failed to mention the doc- trine of this John the Christian, for whom Simplicius or Averroes had only sarcasm. The Christian Middle Ages, taken by the naïve admiration which inspired the peri- patetic Science when it was revealed, shared first, with respect to the assumption of Philoponus, the disdain of the Greek and Arab commentators; St. Thomas Aquinas only mentions it to warn those it could seduce. But following the condemnations in 1277 by the Bishop of Paris, Étienne Tem- pier, against a group of theses that supported “Aristotle and those of his suite,” a great movement emerges, which will release the Christian thought from the yoke of Peripateticism and Neoplatonism and produce what the archaism of the Renaissance called the Science of the “Moderns.” William of Ockham attacks, with his customary vivacity, the theory of the mo- tion of projectiles proposed by Aristotle; he is content, besides, to simply destroy without building anything; but his critics, with some followers of Duns Scotus, re- store the honor of the doctrine of John Philoponus; energy, the motive force of which he had spoken, reappears under the name of impetus. This hypothesis of the impe- tus, impressed in the projectile by the hand or by the machine which lauched it, is seized upon by a secular master of the Faculty of Arts in Paris, a physicist of genius; Jean Buridan, toward the middle of the 14th century, takes it as the foundation of a Dynamics with which “all the phenemena agree.” The role that the impetus plays in the Dynamics of Buridan is very exactly what Galileo will assign to the impeto or momento; Descartes to the quantité de mouve- ment; and finally Leibniz to the living force. So exact is this correspondance that, for explaining in his Academic Lessons the Dynamics of Galileo, Torricelli will often take up the reasoning and almost the very words of Buridan. This impetus, which would remain unchanged within the projectile if it were not incessantly destroyed by the resistance of the medium and by the action of grav- ity contrary to the movement, Buridan takes, at equal speed, as proportional to the amount of primary matter that the body contains; he conceived this quantity and de- scribed in terms almost identical to those which Newton will use to define mass. At equal mass the impetus is as much greater as the speed is greater; prudently, Buridan refrains from further clarifying the relationship between the size of the impetus and its speed; more daringly, Galileo and Descartes would agree that this relationship is reduced to a proportionality; they will also obtain an erroneous assessment of the impeto and momentum which Leibniz will have to rectify. Preface xv Like the resistance of the medium, gravity reduces constantly and eventually de- stroys the impetus of a mobile that is launched upward, because such a movement is contrary to the natural tendancy of this gravity; but in a mobile that falls, the move- ment is in line with the trendancy of gravity; the impetus also must be constantly increasing, and the speed, in the course of the movement, must grow constantly. This is, according to Buridan, the explanation of the acceleration observed in the fall of a body, an acceleration that the science of Aristotle already knew, but for which the Hellenic commentators of the Stagirite, Arabs or Christians, had given unacceptable reasons. This Dynamics expressed by Jean Buridan presents in a purely qualitative but always exact way the truths that the notions of live force and work allow us to for- mulate in quantitative language. The philosopher of Béthune is not alone in professing this Dynamics; his most brilliant disciples, Albert of Saxony and Nicole Oresme, adopt it and teach it; the French writings of Oresme make it known even to those who are not clerics. When no resistant medium and when no natural tendancy analogous to gravity is opposed to movement, the impetus maintains an invariable intensity; the mobile to which a movement of translation or rotation is applied continues to move with constant speed indefinitely. It is in this form that the law of inertia presents itself to the mind of Buridan; it is in this same form that Galileo will receive it From this law of inertia, Buridan draws a corollary, the novelty of which we must now admire. If the celestial orbs move eternally with a constant speed, it is, according to the axiom of the dynamics of Aristotle, because each of them is subject to an eternal mover of immutable power; the philosophy of the Stagirite requires that such a mover is an intelligence separate from matter. The study of the motive intelligences of the celestial orbs is not only the culmination of Peripatetic Metaphysics; it is the central doctrine around which all the Neoplatonic Metaphysics of the Greeks and of the Arabs revolve, and the Scholastics of the 13th century do not hesitate to receive, into their Christian systems, this legacy of pagan theologies. Now, Buridan has the audacity to write these lines: From the creation world, God has moved the heavens with movements identical to those which currently move them; he impressed on them then an impetus by which they continue to be moved uniformly; these impetus, indeed, meeting no contrary resistance, are never destroyed nor weakened… According to this conception, it is not necessary to pose the existence of intelligences that move celestial bodies in an appropriate manner. Buridan stated this thought in various circumstances; Albert of Saxony explains it in turn; and Nicole Oresme, to formulate it, finds this comparison: “Except for violence, it is in no way similar to when a man has made a clock i and lets it go to be moved by itself.” If one wanted, by a precise line, to separate the reigns of the ancient Science of the reign of modern Science, it would have to be drawn, we believe, at the moment when Jean Buridan developed this theory, at the moment when one stopped looking at the stars as moved by divine beings and when it has been admitted that the celestial and sublunary movements depend on the same mechanics.
Recommended publications
  • What the Renaissance Knew Piero Scaruffi Copyright 2018
    What the Renaissance knew Piero Scaruffi Copyright 2018 http://www.scaruffi.com/know 1 What the Renaissance knew • The 17th Century – For tens of thousands of years, humans had the same view of the universe and of the Earth. – Then the 17th century dramatically changed the history of humankind by changing the way we look at the universe and ourselves. – This happened in a Europe that was apparently imploding politically and militarily, amid massive, pervasive and endless warfare – Grayling refers to "the flowering of genius“: Galileo, Pascal, Kepler, Newton, Cervantes, Shakespeare, Donne, Milton, Racine, Moliere, Descartes, Spinoza, Leibniz, Locke, Rubens, El Greco, Rembrandt, Vermeer… – Knowledge spread, ideas circulated more freely than people could travel 2 What the Renaissance knew • Collapse of classical dogmas – Aristotelian logic vs Rene Descartes' "Discourse on the Method" (1637) – Galean medicine vs Vesalius' anatomy (1543), Harvey's blood circulation (1628), and Rene Descartes' "Treatise of Man" (1632) – Ptolemaic cosmology vs Copernicus (1530) and Galileo (1632) – Aquinas' synthesis of Aristotle and the Bible vs Thomas Hobbes' synthesis of mechanics (1651) and Pierre Gassendi's synthesis of Epicurean atomism and anatomy (1655) – Papal unity: the Thirty Years War (1618-48) shows endless conflict within Christiandom 3 What the Renaissance knew • Decline of – Feudalism – Chivalry – Holy Roman Empire – Papal Monarchy – City-state – Guilds – Scholastic philosophy – Collectivism (Church, guild, commune) – Gothic architecture 4 What
    [Show full text]
  • Projectile Motion Acc
    PHY1033C/HIS3931/IDH 3931 : Discovering Physics: The Universe and Humanity’s Place in It Fall 2016 Prof. Peter Hirschfeld, Physics Announcements • HW 1 due today; HW 2 posted, due Sept. 13 • Lab 1 today 2nd hour • Reading: Gregory Chs. 2,3 Wertheim (coursepack), Lindberg (coursepack) • HW/office hours 10:40 M,T, 11:45 W email/call to make appt. if these are bad Last time Improvements to Aristotle/Eudoxus Appolonius of Perga (~20 -190 BCE) : proposed: 1) eccentric orbits (planet goes in circle at const. speed, but Earth was off center) 2) epicycles (planet moves on own circle [epicycle] around a point that travels in another circle [deferent] around E. His model explained • variation in brightness of planets • changes in angular speed Ptolemy (AD 100 – c. 170): Almagest summarized ancient ideas about solar system. He himself proposed “equant point”: eccentric point about which planet moved with constant angular speed. Not true uniform circular motion, but explained data better. Ptolemaic universe (Equant point suppressed) • Note: this picture puts planets at a distance relative to Earth corresponding to our modern knowledge, but Ptolemaic system did not predict order of planets (or care!) • Exception: inner planets had to have orbits that kept them between Earth and Sun • Why epicycles? Not asked. Clicker quickies Q1: Ptolemy’s model explained retrograde motion of the planets. This means that A. Some planets moved clockwise while others moved counterclockwise along their orbits B. Some planets moved outside the plane of the ecliptic C. Some planets were observed to stop in the sky, move apparently backwards along their path, forward again D.
    [Show full text]
  • The Logic of Where and While in the 13Th and 14Th Centuries
    The Logic of Where and While in the 13th and 14th Centuries Sara L. Uckelman Department of Philosophy, Durham University Abstract Medieval analyses of molecular propositions include many non-truthfunctional con- nectives in addition to the standard modern binary connectives (conjunction, dis- junction, and conditional). Two types of non-truthfunctional molecular propositions considered by a number of 13th- and 14th-century authors are temporal and local propositions, which combine atomic propositions with ‘while’ and ‘where’. Despite modern interest in the historical roots of temporal and tense logic, medieval analy- ses of ‘while’ propositions are rarely discussed in modern literature, and analyses of ‘where’ propositions are almost completely overlooked. In this paper we introduce 13th- and 14th-century views on temporal and local propositions, and connect the medieval theories with modern temporal and spatial counterparts. Keywords: Jean Buridan, Lambert of Auxerre, local propositions, Roger Bacon, temporal propositions, Walter Burley, William of Ockham 1 Introduction Modern propositional logicians are familiar with three kinds of compound propositions: Conjunctions, disjunctions, and conditionals. Thirteenth-century logicians were more liberal, admitting variously five, six, seven, or more types of compound propositions. In the middle of the 13th century, Lambert of Auxerre 1 in his Logic identified six types of ‘hypothetical’ (i.e., compound, as opposed to atomic ‘categorical’, i.e., subject-predicate, propositions) propo- sitions: the three familiar ones, plus causal, local, and temporal propositions [17, 99]. Another mid-13th century treatise, Roger Bacon’s Art and Science of Logic¶ , lists these six and adds expletive propositions (those which use the connective ‘however’), and other ones not explicitly classified such as “Socrates 1 The identity of the author of this text is not known for certain.
    [Show full text]
  • Jean Buridan Qui a Étudié Les Arts Libéraux S’Est Intéressé Aux Dis- Cussions Sur Le Modèle De L’Univers Et Sur La Théorie Du Mouvement D’Aristote
    Jean Buridan qui a étudié les arts libéraux s’est intéressé aux dis- cussions sur le modèle de l’univers et sur la théorie du mouvement d’Aristote. Il a redécouvert et diffusé la théorie de l’impetus. Éla- borée à Alexandrie, cette théorie visait à combler une lacune de la théorie du mouvement d’Aristote. Jean Buridan 1295-1358 Jean Buridan Discussion du géocentrisme Si la terre reste toujours immobile au Jean Buridan est né à Béthune au Pas de centre du monde; ou non ... [et] si, en Calais, en 1295 et est mort vers 1358. supposant que la terre est en mouve- Il étudie à l’université de Paris où il est ment de rotation autour de son cen- un disciple de Guillaume d’Occam. Tra- tre et de ses propres pôles, tous les phé- ditionnellement, pour se préparer à une nomènes que nous observons peuvent carrière en philosophie, les aspirants étu- être sauvés? dient la théologie. Buridan choisit d’étu- dier les arts libéraux (voir encadré) plu- Peut-on, en considérant que la Terre est tôt que la théologie et il préserve son in- en rotation sur elle-même, expliquer dépendance en demeurant clerc séculier tous les phénomènes que nous obser- plutôt qu’en se joignant à un ordre reli- vons ? Buridan donne une série d’argu- gieux. ments en accord avec la rotation de la Buridan enseigne la philosophie à Pa- Terre et une autre série à l’encontre de ris et est élu recteur de Angleterre Calais Belgique cette hypothèse. Il écrit : Lille Allemagne l’Université en 1328 et en Béthune Il est vrai, sans aucun doute, que si la 1340.
    [Show full text]
  • A New Vision of the Senses in the Work of Galileo Galilei
    Perception, 2008, volume 37, pages 1312 ^ 1340 doi:10.1068/p6011 Galileo's eye: A new vision of the senses in the work of Galileo Galilei Marco Piccolino Dipartimento di Biologia, Universita© di Ferrara, I 44100 Ferrara, Italy; e-mail: [email protected] Nicholas J Wade University of Dundee, Dundee DD1 4HN, Scotland, UK Received 4 December 2007 Abstract. Reflections on the senses, and particularly on vision, permeate the writings of Galileo Galilei, one of the main protagonists of the scientific revolution. This aspect of his work has received scant attention by historians, in spite of its importance for his achievements in astron- omy, and also for the significance in the innovative scientific methodology he fostered. Galileo's vision pursued a different path from the main stream of the then contemporary studies in the field; these were concerned with the dioptrics and anatomy of the eye, as elaborated mainly by Johannes Kepler and Christoph Scheiner. Galileo was more concerned with the phenomenology rather than with the mechanisms of the visual process. His general interest in the senses was psychological and philosophical; it reflected the fallacies and limits of the senses and the ways in which scientific knowledge of the world could be gathered from potentially deceptive appearances. Galileo's innovative conception of the relation between the senses and external reality contrasted with the classical tradition dominated by Aristotle; it paved the way for the modern understanding of sensory processing, culminating two centuries later in Johannes Mu« ller's elaboration of the doctrine of specific nerve energies and in Helmholtz's general theory of perception.
    [Show full text]
  • NSP4 Pragmatist Kant
    Nordic NSP Studies in Pragmatism Helsinki — 2019 Giovanni Maddalena “Anti-Kantianism as a Necessary Characteristic of Pragmatism” In: Krzysztof Piotr Skowronski´ and Sami Pihlstrom¨ (Eds.) (2019). Pragmatist Kant—Pragmatism, Kant, and Kantianism in the Twenty-first Century (pp. 43–59). Nordic Studies in Pragmatism 4. Helsinki: Nordic Pragmatism Network. issn-l 1799-3954 issn 1799-3954 isbn 978-952-67497-3-0 Copyright c 2019 The Authors and the Nordic Pragmatism Network. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. CC BY NC For more information, see http://creativecommons.org/licenses/by-nc/3.0/ Nordic Pragmatism Network, NPN Helsinki 2019 www.nordprag.org Anti-Kantianism as a Necessary Characteristic of Pragmatism Giovanni Maddalena Universit`adel Molise 1. Introduction Pragmatists declared their anti-Cartesianism at the first appearance of the movement, in Peirce’s series on cognition written for the Journal of Specu- lative Philosophy (1867–8). As is well known, the brilliant young scientist characterized Cartesian doubt as a “paper doubt”, by opposing it to sci- entists’ true “living doubt” (Peirce 1998 [1868], 115).1 Some readers have not understood the powerful novelty that his opposition to Cartesianism implies. According to Peirce, research does not proceed from skeptical, “paper” doubt. For Peirce, doubt is possible because of a previous cer- tainty, a position which is similar to the one held by Augustine (Augustine 1970). Research moves from one certainty to another; the abandonment of an initial certainty is only reasonable in the presence of a real and surprising phenomenon that alters one of the pillars on which it stands.
    [Show full text]
  • Reflections on Vailati's Pragmatism
    Reflections on Vailati's Pragmatism M. CAAMANO AND P. SUPPES Preliminary remarks The pragmatic project of developing a richer notion of experience Classical pragmatists made a sustained effort to develop a new con­ ception of experience, free from some simplistic assumptions shared by both traditional rationalists and empiricists, like the idea that experi­ enceresults from a combination of simple sensations. In his main paper on pragmatism, "The origins and the fundamental idea.of pragmatism" (1909b), Giovanni Vailati characterized our experience of permanent, objective existence in terms of a certain kind of conditional expecta­ tions, in particular, those which are conditioned to certain deliberate actions of ours being performed. His experiential account of objective existence, based on a systematic relation between deliberate actions and expectations, is a permanent contribution to pragmatic thought, which we analyze and assess. We also consider Vailati's revision of the l"eircean pragmatic maxim, the pragmatic evaluation of meaningless assertions, and his vindication of inferential usefulness as a determin­ ing factor in both formal systems and empirical theories. Our discus­ sion will as well include a critical analysis of some less satisfactory aspects of Vailati's thought, whose Brentanian conception of mental facts contrasts sharply with James' sophisticated study of the mind in The Principles of Psychology (1890). But let us now make some prelim­ inary comments to place Vailati's work within the broader pragmatic tradition. Evans' bibliography (1930) of the references to pragmatism Logic and Pragmatism. Selected Essays QY Giovanni Vailati. C. Arrighi, P. Cantu, M. De Zan, and P. Suppes. Copyright © 2009, CSLI Publications.
    [Show full text]
  • Download Report 2010-12
    RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force.
    [Show full text]
  • The Social and Economic Roots of the Scientific Revolution
    THE SOCIAL AND ECONOMIC ROOTS OF THE SCIENTIFIC REVOLUTION Texts by Boris Hessen and Henryk Grossmann edited by GIDEON FREUDENTHAL PETER MCLAUGHLIN 13 Editors Preface Gideon Freudenthal Peter McLaughlin Tel Aviv University University of Heidelberg The Cohn Institute for the History Philosophy Department and Philosophy of Science and Ideas Schulgasse 6 Ramat Aviv 69117 Heidelberg 69 978 Tel Aviv Germany Israel The texts of Boris Hessen and Henryk Grossmann assembled in this volume are important contributions to the historiography of the Scientific Revolution and to the methodology of the historiography of science. They are of course also historical documents, not only testifying to Marxist discourse of the time but also illustrating typical European fates in the first half of the twentieth century. Hessen was born a Jewish subject of the Russian Czar in the Ukraine, participated in the October Revolution and was executed in the Soviet Union at the beginning of the purges. Grossmann was born a Jewish subject of the Austro-Hungarian Kaiser in Poland and served as an Austrian officer in the First World War; afterwards he was forced to return to Poland and then because of his revolutionary political activities to emigrate to Germany; with the rise to power of the Nazis he had to flee to France and then America while his family, which remained in Europe, perished in Nazi concentration camps. Our own acquaintance with the work of these two authors is also indebted to historical context (under incomparably more fortunate circumstances): the revival of Marxist scholarship in Europe in the wake of the student movement and the pro- fessionalization of history of science on the Continent.
    [Show full text]
  • E D I T O R I a L
    E D I T O R I A L “RETRO-PROGRESSING” As one browses through the history section of a library, one of the volumes that is likely to catch one’s attention is The Discoverers by Daniel Boorstin.1 It is an impressive, 700-page volume. Published in 1983, it chronicles in a semi-popular style selected aspects of man’s discoveries. Two chapters entitled “The Prison of Christian Dogma” and “A Flat Earth Returns” deal with the outlandish con- cept of an earth that is flat instead of spherical. Boorstin has impressive academic credentials from Harvard and Yale, and has held prestigious positions such as the Librarian of Congress, Director of the National Museum of History and Tech- nology, and Senior Historian of the Smithsonian Institution. In The Discoverers he reflects the popular view that the ancient Greeks, including Aristotle and Plato, believed Earth to be a sphere; however, after the rise of Christianity a period of “scholarly amnesia” set in which lasted from around 300 to 1300 A.D. During this time, according to Boorstin, “Christian faith and dogma replaced the useful [spherical] image of the world that had been so slowly, so painfully, and so scrupulously drawn by ancient geographers.” The “spherical” view was replaced by the concept of a flat earth, which Boorstin characterizes as “pious caricatures.”2 Boorstin bolsters his case by mentioning a couple of minor writers — Lactantius and Cosmas — who believed in a flat earth and lived during this “dark age.” He also implicates the powerful authority of St. Augustine of Hippo (354-430), who “heartily agreed” that antipodes “could not exist.”3 Antipodes represented lands on the opposite side of a spherical earth where trees and men, if present, would be upside down, with their feet above their heads; hence, the “antipodes” (opposite-feet) designation.
    [Show full text]
  • Buridan-Editions.Pdf
    Buridan Logical and Metaphysical Works: A Bibliography https://www.historyoflogic.com/biblio/buridan-editions.htm History of Logic from Aristotle to Gödel by Raul Corazzon | e-mail: [email protected] Buridan: Editions, Translations and Studies on the Manuscript Tradition INTRODUCTION I give an updated list of the published and unpublished logical and metaphysical works of Buridan, and a bibliography of the editions and translations appeared after 2000. A complete list of Buridan's works and manuscripts can be found in the ' Introduction' by Benoît Patar to his edition of "La Physique de Bruges de Buridan et le Traité du Ciel d'Albert de Saxe. Étude critique, textuelle et doctrinale" Vol. I, Longueil, Les Presses Philosophiques, 2001 (2 volumes), pp. 33* - 75*. SUMMARY LIST OF BURIDAN'S LATIN WORKS ON LOGIC AND METAPHYSICS Logical Works: N. B. The treatises known as Artes Veterem and commented by Buridan were the Isagoge by Porphyry and the Categoriae (Predicamenta) and the Peri Hermeneias by Aristotle. 1. Expositio Super Artes Veterem 2. Quaestiones Super Artes Veterem 3. Expositio in duos libros Analyticorum priorum Aristotelis 4. Quaestiones in duos libros Analyticorum priorum Aristotelis 5. Expositio in duos libros Analyticorum posteriorum Aristotelis 6. Quaestiones in duos libros Analyticorum posteriorum Aristotelis 7. Quaestiones in octo libros Topicorum Aristotelis 8. Quaestiones in librum 'de sophisticis Elenchis' Aristotelis Summulae de dialectica, commentary of the Summulae logicales by Peter of Spain, composed by the following treatises: 1. De propositionibus 2. De praedicabilibus 3. In praedicamenta 4. De suppositionibus 5. De syllogismis 6. De locis dialecticis 1 di 10 22/09/2016 17:30 Buridan Logical and Metaphysical Works: A Bibliography https://www.historyoflogic.com/biblio/buridan-editions.htm 7.
    [Show full text]
  • November 2019
    A selection of some recent arrivals November 2019 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPÈRE, André-Marie. THE FOUNDATION OF ELECTRO- DYNAMICS, INSCRIBED BY AMPÈRE AMPÈRE, Andre-Marie. Mémoires sur l’action mutuelle de deux courans électri- ques, sur celle qui existe entre un courant électrique et un aimant ou le globe terres- tre, et celle de deux aimans l’un sur l’autre. [Paris: Feugeray, 1821]. $22,500 8vo (219 x 133mm), pp. [3], 4-112 with five folding engraved plates (a few faint scattered spots). Original pink wrappers, uncut (lacking backstrip, one cord partly broken with a few leaves just holding, slightly darkened, chip to corner of upper cov- er); modern cloth box. An untouched copy in its original state. First edition, probable first issue, extremely rare and inscribed by Ampère, of this continually evolving collection of important memoirs on electrodynamics by Ampère and others. “Ampère had originally intended the collection to contain all the articles published on his theory of electrodynamics since 1820, but as he pre- pared copy new articles on the subject continued to appear, so that the fascicles, which apparently began publication in 1821, were in a constant state of revision, with at least five versions of the collection appearing between 1821 and 1823 un- der different titles” (Norman). The collection begins with ‘Mémoires sur l’action mutuelle de deux courans électriques’, Ampère’s “first great memoir on electrody- namics” (DSB), representing his first response to the demonstration on 21 April 1820 by the Danish physicist Hans Christian Oersted (1777-1851) that electric currents create magnetic fields; this had been reported by François Arago (1786- 1853) to an astonished Académie des Sciences on 4 September.
    [Show full text]