Recommendations for Euthanasia of Experimental Animals: Part 1

Total Page:16

File Type:pdf, Size:1020Kb

Recommendations for Euthanasia of Experimental Animals: Part 1 WORKING PARTY REPORT Recommendations for euthanasia of experimental animals: Part 1 Working Party: Mrs Bryony Close (Chair), Dr Keith Banister, Dr Vera Baumans, Dr Eva-Maria Bernoth, Dr Niall Bromage, DrJohn Bunyan, Professor Dr Wolff Erhardt, Professor Paul Flecknell, Dr Neville Gregory, Professor Dr Hansjoachim Hackbarth, Professor David Morton & Mr Clifford Warwick Correspondence to: Mrs B Close, Battleborough Croft, Battleborough Lane, Brent Knoll, Highbridge, Somerset TA9 4DS, UK This document was prepared for DGXI of the European Commission to be used with Directive 86/609/EEC of 24 November 1986, on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scienti®c purposes (No L 358, ISSN 0378-6978). It refers especially to Article 2(1) published by the European Commission in October 1995 which de®nes `humane method of killing' as `the killing of an animal with a minimum of physical and mental suffering, depending on the species'. This report is published in two parts. Contents to Part 1 This ®rst part comprises Sections 1 Acknowledgements 294 and 2 of the report, together with a Preface 294 reading list. Section 3 of the report, 1 Introduction 295 1.1 Objectives of euthanasia 295 together with the list of all references 1.2 De®nition of terms 295 cited in both parts and details of 1.3 Signs of pain and distress 296 training materials, will be published in 1.4 Recognition and con®rmation of death 296 the January 1997 issue of Laboratory 1.5 Personnel and training 297 Animals. Reprints combining both 1.6 Handling and restraint 297 parts of the report will be available 1.7 Equipment 297 1.8 Carcass and waste disposal 298 from Mrs S E Wolfensohn, Supervisor 2 General comments on methods of of Veterinary Services, University of euthanasia 298 Oxford, Veterinary Services, c/o 2.1 Acceptable methods of University Laboratory of Physiology, euthanasia 298 2.2 Methods acceptable for Parks Road, Oxford OX1 3PT, UK. unconscious animals 305 (Tel:+44(0)1865-272545, 2.3 Methods that are not Fax:+44(0)1865-272118, acceptable for euthanasia 306 Email: [email protected]). Further reading 309 Accepted 15 February 1996 LaboratoryAnimals (1996) 30, 293^316 294 Working Party Report Acknowledgements used in experiments and for other scienti®c purposes in assessing which method of We would like to thank the European euthanasia is the most humane and appro- Commission DGXI for providing funding for priate for the species of animal that they are this report and also Laboaratory Animals Ltd using. A brief description of each method is for publishing it and making reprints avail- given with reasons for accepting or rejecting able in order to achieve its widespread them. Details of how to carry out different distribution. methods are not provided; these may be We would like to thank the following found in references cited and in the recom- people and organizations who provided valu- mended reading list. able assistance and comments on the test: Dr Methods classi®ed as `acceptable' are those J Anderson (Animals (Scienti®c Procedures) that are considered humane for use on Inspectorate, UK Home Of®ce), Dr N conscious or lightly sedated animals. Other Baudrihaye (European Federation of Pharma- methods may be acceptable only if used on ceutical Industries' Associations), Professor J heavily sedated or unconscious animals. In Bourne (Institute for Animal Health, UK), Dr principle, all methods can be used on D Forbes (Laboratory Animal Science Asso- unconscious animals unless they are unac- ciation, UK), Professor K GaÈrtner (Medizi- ceptably dangerous to personnel or there is a nische Hochschule Hannover, Germany), Mr risk of the animal regaining consciousness J A Gregory (Institute of Animal Technology, before death occurs. Methods included under UK), Professor O HaÈnninen (Secretary those `acceptable for unconscious animals' General, ICLAS), Mrs R Harrison (UK), Dr F are those most frequently used in practice. R Homberger (University of Zurich, The last category of methods `not acceptable' Switzerland), Mr T D Hornett (Glaxo Re- are not to be used for the reasons provided in search and Development, UK), Dr K Iwarsson each case. (Karolinska Institutet, Sweden), Dr T Jenes- There are three main sections to this kog (National Board for Laboratory Animals report. Section 1 deals with general notes on (CFN), Sweden), Dr M Jennings (Royal legislative requirements of the 1986 Council Society for the Prevention of Cruelty to Directive of the EEC, general requirements of Animals, UK), Dr G Mahouy (Institut euthanasia, de®nitions of terms, and other d'HeÂmatologie, Universite de Paris, France), factors to be considered when killing experi- Professor R Murison (University of Bergen, mental animals. Section 2 provides informa- Norway), Mr P Nowlan (University of Du- tion on methods of euthanasia used for blin, Ireland), Professor C Rehbinder (Na- vertebrates and is divided broadly into tional Board for Laboratory Animals (CFN), acceptable physical and chemical methods, Sweden), Mr A Sainsbury (Institute of methods acceptable for insensible animals, Zoology, London), Professor P Schambye and those methods not considered accepta- (Board of Animal Experiments Inspectorate, ble. Section 3 covers each group of species Denmark), Dr W Scharmann (Bundesge- from ®sh to primates with general informa- sundheitsamt, Germany), Professor U tion pertaining to the species, including Schatzmann (UniversitaÈt Bern, Switzerland), recommendations on embryonic and larval Dr D Straughan (UK), Dr P Terpstra (CRC forms. Methods of euthanasia are listed and Contract Research Center, Belgium), Profes- brie¯y discussed. At the end of each species sor J E van Dijk (University of Utrecht, the section, there is a table summarizing the Netherlands), Mr D Wilkins (Eurogroup for recommendations for that species. Animal Welfare), Dr J Wong (Canadian There are, in addition, comprehensive lists Council on Animal Care). of cited references and literature recom- mended for further reading (divided into Preface general and species groups), together with information on audiovisual training materi- This report has been produced in order to als that may be used in training programmes assist personnel concerned with animals to encourage humane euthanasia practices. Euthanasia of experimental animals 295 It is recommended that all personnel read physical and mental suffering, depending on Section 1. If information is required about a the species. particular method, this may be obtained in Whilst this document provides recom- Section 2, and if information is required mendations for the euthanasia of experi- about a particular species, this may be found mental animals, it is strongly recommended in Section 3. that controls and guidelines issued in other EC directives and regulations for the eutha- nasia of animals be taken into consideration 1 Introduction (e.g. Council Directive 93/119/EC (Commis- sion of the European Communities 1993)). Animals are killed in laboratories or breeding establishments for various reasons: 1.1 Objectives of euthanasia . at the end of an experiment or when there The primary criteria for euthanasia in terms might be continuing adverse effects; of animal welfare are that the method be . to provide blood and other tissues for a painless, achieve rapid unconsciousness and scienti®c purpose; death, require minimum restraint, avoid . when levels of pain, distress and suffering excitement, is appropriate for the age, are likely to exceed the designated level; species, and health of the animal, must . where the health or welfare of the animals minimize fear and psychological stress in the are grounds for concern; animal, be reliable, reproducible, irreversible, . when they are no longer suitable for simple to administer (in small doses if breeding; possible) and safe for the operator, and, so far . unwanted stock or those with unsuitable as possible, be aesthetically acceptable for characteristics, for example, type or sex, the operator. are not needed. 1.2 Definition of terms The Council Directive of 24 November The word euthanasia means a gentle death 1986 (Commission of the European Com- and should be regarded as an act of humane munities 1986) on the approximation of laws, killing with the minimum of pain, fear and regulations and administrative provisions of distress. the Member States regarding the protection Consciousness is the state of awareness of of animals used for experimental and other a normal animal when it can perceive stimuli scienti®c purposes (86/609/EEC) excludes from its external environment and respond in the killing of an animal from the legal the normal behaviour of an awake individual. de®nition of an experiment (Article 2(d)) if it Unconsciousness will be used to mean is carried out using the least painful method insensibility to external stimuli as would be accepted in modern practice and in accor- expected in coma or during general anaes- dance with the scienti®c purpose of collect- thesia. Two main ways of measuring insen- ing blood and other tissues from the killed sibility are to look at the physical responses animals, therefore leaving these procedures and responses in the central nervous system outside the protection of the Directive. This at the cortical level. document is designed to assist all those Pain may be de®ned as `an aversive sensory concerned with experimental animals in experience that elicits protective motor deciding which method
Recommended publications
  • Analgesia and Sedation in Hospitalized Children
    Analgesia and Sedation in Hospitalized Children By Elizabeth J. Beckman, Pharm.D., BCPS, BCCCP, BCPPS Reviewed by Julie Pingel, Pharm.D., BCPPS; and Brent A. Hall, Pharm.D., BCPPS LEARNING OBJECTIVES 1. Evaluate analgesics and sedative agents on the basis of drug mechanism of action, pharmacokinetic principles, adverse drug reactions, and administration considerations. 2. Design an evidence-based analgesic and/or sedative treatment and monitoring plan for the hospitalized child who is postoperative, acutely ill, or in need of prolonged sedation. 3. Design an analgesic and sedation treatment and monitoring plan to minimize hyperalgesia and delirium and optimize neurodevelopmental outcomes in children. INTRODUCTION ABBREVIATIONS IN THIS CHAPTER Pain, anxiety, fear, distress, and agitation are often experienced by GABA γ-Aminobutyric acid children undergoing medical treatment. Contributory factors may ICP Intracranial pressure include separation from parents, unfamiliar surroundings, sleep dis- PAD Pain, agitation, and delirium turbance, and invasive procedures. Children receive analgesia and PCA Patient-controlled analgesia sedatives to promote comfort, create a safe environment for patient PICU Pediatric ICU and caregiver, and increase patient tolerance to medical interven- PRIS Propofol-related infusion tions such as intravenous access placement or synchrony with syndrome mechanical ventilation. However, using these agents is not without Table of other common abbreviations. risk. Many of the agents used for analgesia and sedation are con- sidered high alert by the Institute for Safe Medication Practices because of their potential to cause significant patient harm, given their adverse effects and the development of tolerance, dependence, and withdrawal symptoms. Added layers of complexity include the ontogeny of the pediatric patient, ongoing disease processes, and presence of organ failure, which may alter the pharmacokinetics and pharmacodynamics of these medications.
    [Show full text]
  • Euthanasia of Experimental Animals
    EUTHANASIA OF EXPERIMENTAL ANIMALS • *• • • • • • • *•* EUROPEAN 1COMMISSIO N This document has been prepared for use within the Commission. It does not necessarily represent the Commission's official position. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1997 ISBN 92-827-9694-9 © European Communities, 1997 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Belgium European Commission EUTHANASIA OF EXPERIMENTAL ANIMALS Document EUTHANASIA OF EXPERIMENTAL ANIMALS Report prepared for the European Commission by Mrs Bryony Close Dr Keith Banister Dr Vera Baumans Dr Eva-Maria Bernoth Dr Niall Bromage Dr John Bunyan Professor Dr Wolff Erhardt Professor Paul Flecknell Dr Neville Gregory Professor Dr Hansjoachim Hackbarth Professor David Morton Mr Clifford Warwick EUTHANASIA OF EXPERIMENTAL ANIMALS CONTENTS Page Preface 1 Acknowledgements 2 1. Introduction 3 1.1 Objectives of euthanasia 3 1.2 Definition of terms 3 1.3 Signs of pain and distress 4 1.4 Recognition and confirmation of death 5 1.5 Personnel and training 5 1.6 Handling and restraint 6 1.7 Equipment 6 1.8 Carcass and waste disposal 6 2. General comments on methods of euthanasia 7 2.1 Acceptable methods of euthanasia 7 2.2 Methods acceptable for unconscious animals 15 2.3 Methods that are not acceptable for euthanasia 16 3. Methods of euthanasia for each species group 21 3.1 Fish 21 3.2 Amphibians 27 3.3 Reptiles 31 3.4 Birds 35 3.5 Rodents 41 3.6 Rabbits 47 3.7 Carnivores - dogs, cats, ferrets 53 3.8 Large mammals - pigs, sheep, goats, cattle, horses 57 3.9 Non-human primates 61 3.10 Other animals not commonly used for experiments 62 4.
    [Show full text]
  • Diluted Isoflurane As a Suitable Alternative for Diethyl Ether for Rat Anaesthesia in Regular Toxicology Studies
    FULL PAPER Laboratory Aminal Science Diluted Isoflurane as a Suitable Alternative for Diethyl ether for Rat Anaesthesia in Regular Toxicology Studies Toshiaki NAGATE1)*, Tomonobu CHINO1), Chizuru NISHIYAMA1), Daisuke OKUHARA1), Toru TAHARA1), Yoshimasa MARUYAMA1), Hiroko KASAHARA1), Kayoko TAKASHIMA1), Sayaka KOBAYASHI1), Yoshiyuki MOTOKAWA1), Shin-ichi MUTO1) and Junji KURODA1) 1)Toxicology Research Laboratory, R&D, Kissei Pharmaceutical Co., Ltd., 2320–1 Maki, Hotaka, Azumino-City, Nagano-Pref. 399–8305, Japan (Received 6 October 2006/Accepted 20 July 2007) ABSTRACT. Despite its explosive properties and toxicity to both animals and humans, diethyl ether is an agent long used in Japan in the anaesthesia jar method of rat anaesthetises. However, in response to a recent report from the Science Council of Japan condemning diethyl ether as acceptable practice, we searched for an alternative rat anaesthesia method that provided data continuous with pre-existing regular toxicology studies already conducted under diethyl ether anaesthesia. For this, we examined two candidates; 30% isoflurane diluted with propylene glycol and pentobarbitone. Whereas isoflurane is considered to be one of the representatives of modern volatile anaesthetics, the method of propylene glycol-diluted 30% isoflurane used in this study was our modification of a recently reported method revealed to have several advantages as an inhalation anaesthesia. Intraperitoneal pentobarbitone has long been accepted as a humane method in laboratory animal anaesthesiology. These 2 modalities were scrutinized in terms of consistency of haematology and blood chemistry with previous results using ether. We found that pentobarbitone required a much longer induction time than diethyl ether, which is suspected to be the cause of fluctuations in several haematological and blood chemical results.
    [Show full text]
  • The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical
    THE CARDIORESPIRATORY AND ANESTHETIC EFFECTS OF CLINICAL AND SUPRA CLINICAL DOSES OF ALF AXALONE IN CYCLODEXTRAN IN CATS AND DOGS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura L. Nelson, B.S., D.V.M. * * * * * The Ohio State University 2007 Dissertation Committee: Professor Jonathan Dyce, Adviser Professor William W. Muir III Professor Shane Bateman If I have seen further, it is by standing on the shoulders of giants. lmac Ne1vton (1642-1727) Copyright by Laura L. Nelson 2007 11 ABSTRACT The anesthetic properties of steroid hormones were first identified in 1941, leading to the development of neurosteroids as clinical anesthetics. CT-1341 was developed in the early 1970’s, featuring a combination of two neurosteroids (alfaxalone and alphadolone) solubilized in Cremophor EL®, a polyethylated castor oil derivative that allows hydrophobic compounds to be carried in aqueous solution as micelles. Though also possessing anesthetic properties, alphadolone was included principally to improve the solubility of alfaxalone. CT-1341, marketed as Althesin® and Saffan®, was characterized by smooth anesthetic induction and recovery in many species, a wide therapeutic range, and no cumulative effects with repeated administration. Its cardiorespiratory effects in humans and cats were generally mild. However, it induced severe hypersensitivity reactions in dogs, with similar reactions occasionally occurring in cats and humans. The hypersensitivity reactions associated with this formulation were linked to Cremophor EL®, leading to the discontinuation of Althesin® and some other Cremophor®-containing anesthetics. More recently, alternate vehicles for hydrophobic drugs have been developed, including cyclodextrins.
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • Pharmacokinetics of Ovarian Steroids in Sprague-Dawley Rats After Acute Exposure to 2,3,7,8-Tetrachlorodibenzo- P-Dioxin (TCDD)
    Vol. 3, No. 2 131 ORIGINAL PAPER Pharmacokinetics of ovarian steroids in Sprague-Dawley rats after acute exposure to 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) Brian K. Petroff 1,2,3 and Kemmy M. Mizinga4 2Department of Molecular and Integrative Physiology,Physiology, 3Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160. 4Department of Pharmacology,Pharmacology, University of Health Sciences, Kansas City,City, MO 64106 Received: 3 June 2003; accepted: 28 June 2003 SUMMARY 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces abnormalities in ste- roid-dependent processes such as mammary cell proliferation, gonadotropin release and maintenance of pregnancy. In the current study, the effects of TCDD on the pharmacokinetics of 17ß-estradiol and progesterone were examined. Adult Sprague-Dawley rats were ovariectomized and pretreated with TCDD (15 µg/kg p.o.) or vehicle. A single bolus of 17ß-estradiol (E2, 0.3 µmol/kg i.v.) or progesterone (P4, 6 µmol/kg i.v.) was administered 24 hours after TCDD and blood was collected serially from 0-72 hours post- injection. Intravenous E2 and P4 in DMSO vehicle had elimination half-lives of approximately 10 and 11 hours, respectively. TCDD had no signifi cant effect on the pharmacokinetic parameters of P4. The elimination constant 1Corresponding author: Center for Reproductive Sciences, Department of Molecular and Integra- tive Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; e-mail: [email protected] Copyright © 2003 by the Society for Biology of Reproduction 132 TCDD and ovarian steroid pharmacokinetics and clearance of E2 were decreased by TCDD while the elimination half-life, volume of distribution and area under the time*concentration curve were not altered signifi cantly.
    [Show full text]
  • Clinical Anesthesia and Analgesia in Fish
    WellBeing International WBI Studies Repository 1-2012 Clinical Anesthesia and Analgesia in Fish Lynne U. Sneddon University of Liverpool Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_vsm Part of the Animal Studies Commons, Other Animal Sciences Commons, and the Veterinary Toxicology and Pharmacology Commons Recommended Citation Sneddon, L. U. (2012). Clinical anesthesia and analgesia in fish. Journal of Exotic Pet Medicine, 21(1), 32-43. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Clinical Anesthesia and Analgesia in Fish Lynne U. Sneddon University of Liverpool KEYWORDS Analgesics, anesthetic drugs, fish, local anesthetics, opioids, NSAIDs ABSTRACT Fish have become a popular experimental model and companion animal, and are also farmed and caught for food. Thus, surgical and invasive procedures in this animal group are common, and this review will focus on the anesthesia and analgesia of fish. A variety of anesthetic agents are commonly applied to fish via immersion. Correct dosing can result in effective anesthesia for acute procedures as well as loss of consciousness for surgical interventions. Dose and anesthetic agent vary between species of fish and are further confounded by a variety of physiological parameters (e.g., body weight, physiological stress) as well as environmental conditions (e.g., water temperature). Combination anesthesia, where 2 anesthetic agents are used, has been effective for fish but is not routinely used because of a lack of experimental validation. Analgesia is a relatively underexplored issue in regards to fish medicine.
    [Show full text]
  • IV Induction Agents
    Intravenous drugs used for the induction of anaesthesia Dr Tom Lupton, Specialist Registrar in Anaesthesia Dr Oliver Pratt, Consultant Anaesthetist Salford Royal Hospitals NHS Foundation Trust, Salford, UK Key questions This tutorial reviews the basic pharmacology of common intravenous (IV) anaesthetic drugs. By the end of the tutorial, you should be able to decide on the most appropriate drug to use in the situations below and for what reason: 1. A patient with intestinal obstruction requires an emergency laparotomy. 2. A patient with a history of throat cancer, showing marked stridor and signs of respiratory distress, requires a tracheostomy. 3. A patient requiring a burn dressing change. 4. A patient with a history of heart failure requires a general anaesthetic. 5. A dehydrated hypovolaemic patient requires an emergency general anaesthetic. 6. A patient with porphyria comes for an inguinal hernia repair and is requesting a general anaesthetic. 7. A patient requires sedation on the intensive care unit. 8. Anaesthesia in the prehospital environment. What are IV induction drugs? These are drugs that, when given intravenously in an appropriate dose, cause a rapid loss of consciousness. This is often described as occurring within “one arm-brain circulation time” that is simply the time taken for the drug to travel from the site of injection (usually the arm) to the brain, where they have their effect. They are used: • To induce anaesthesia prior to other drugs being given to maintain anaesthesia. • As the sole drug for short procedures. • To maintain anaesthesia for longer procedures by intravenous infusion. • To provide sedation. The concept of intravenous anaesthesia was born in 1932, when Wesse and Schrapff published their report into the use of hexobarbitone, the first rapidly acting intravenous drug.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • The Effectiveness of Ketamine As an Anesthetic for Fish (Rainbow Trout – Oncorhynchus Mykiss)
    Research Article Oceanogr Fish Open Access J Volume 13 Issue 1 - January 2021 Copyright © All rights are reserved by Mohammedsaeed Ganjoor DOI: 10.19080/OFOAJ.2021.13.555852 The Effectiveness of Ketamine as an Anesthetic for Fish (Rainbow Trout – Oncorhynchus mykiss) Mohammedsaeed Ganjoor*, Maysam Salahi-ardekani, Sajad Nazari, Javad Mahdavi, Esmail Kazemi and Mohsen Mohammadpour Genetic and Breeding Research Centre for Cold Water Fishes (ShahidMotahary Cold-water Fishes Center), Iranian Fisheries Science Research Institute, Iran Submission: November 03, 2020; Published: January 12, 2021 Corresponding author: Mohammedsaeed Ganjoor, Genetic and Breeding Research Centre for Cold Water Fishes (ShahidMotahary Cold-water Fishes Center), Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Yasuj, IRAN Email: [email protected] & [email protected] Abstract Ketamine was evaluated as water-soluble anesthetics drug for a species of fish, rainbow trout (Oncorhynchus mykiss). Fish (size ~20 - ~240 anesthesiagr.) were exposed duration to (stage1 a 100-ppm to 3) concentrationand recovery duration of Ketamine was recorded.solution (dissolved Also, surveillance in water), was they evaluated were arranged after recovery. in 4 treatments Ketamine wasbased effective on their to weight range (Treatment-1= 22.8±3.4 g; Treatment-2= 51.7±4.4 g; Treatment-3= 69.8±5.2 g and Treatment-4= 243.8±20.7 g). Elapsed time for cause anesthesia in the fish as 100 ppm concentration. 10 fishes of each treatment (%100) were anesthetized and were induced in stageIII-Plane3 of anesthesia within 2-3 min after exposure to anesthetic solution (Treatment-1= 110.3±3.5 seconds; Treatment-2= 140.0±5.9 sec; Treatment-3= 180.0±5.8 sec and Treatment-4= 190.0±5.8 sec).
    [Show full text]
  • Drug Interaction in Anaesthesia a Review
    DRUG INTERACTION IN ANAESTHESIA A REVIEW M. M. GHONEIM, M.B., B.CH., F.F.A.R.C.S. = RECENTLY, THE P~OBLE.',~s and hazards associated with the interaction between drugs have received widespread attention. The potential for the interaction has certainly increased in recent years. It has been demonstrated that the average patient will receive eight different drugs during one hospitalization. 1 In many in- stances, one drug may profoundly modify the action of another. In such drug inter- actions the effect of one may be prevented, or its action may be intensified. Though sometimes beneficial, drug interactions are most often recognized when they in- crease mortality or morbidity. They form around 19-22 per cent of causes of adverse drug reactionsd There are a number of good general reviews on drug interac- tions, ~-6 but there are not many which are concerned primarily with the practice of anaesthesia. 7,8 The anaesthetist uses a wide variety of pharmacologically active drugs which may interact with one another or with other drugs the patient is receiving. The multitudes of possible interactions limit the possibility of reviewing each individual drug interaction. This also entails a lot of repetition and would not keep pace with the number of new drugs introduced into the market every month. Our aim is elucidation of the principles and mechanisms involved with examples which are of interest to the anaesthetist. Several mechanisms of interaction are recognized. 1. A direct physical or chemical interaction A familiar example is the neutralization of heparin with protamine. This is an example, also, of a useful drug interaction.
    [Show full text]
  • Plasma Progesterone Concentrations and Ovarian Histology in Prairie Deermice (Peromyscus Maniculatus Bairdii) from Experimental Laboratory Populations
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1973 Plasma Progesterone Concentrations and Ovarian Histology in Prairie Deermice (Peromyscus maniculatus Bairdii) from Experimental Laboratory Populations Barry Douglas Albertson College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Biology Commons, and the Endocrinology Commons Recommended Citation Albertson, Barry Douglas, "Plasma Progesterone Concentrations and Ovarian Histology in Prairie Deermice (Peromyscus maniculatus Bairdii) from Experimental Laboratory Populations" (1973). Dissertations, Theses, and Masters Projects. Paper 1539624808. https://dx.doi.org/doi:10.21220/s2-7nsc-4k85 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. PLASMA PPDGESTEPONE CDNCCNTPATIONS AND OVARIAN HISTOLOGY I ’ IN PRAIRIE DEERMICE (PE.RCITYSCUS MANIOJLATUS RAIRDII) FROM EXPERIMENTAL LABORATORY POPULATIONS A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts by Barry Douglas Albertson APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts t (XATl-L, P. 0 iLiis X]Author Approved, July, 1973 (S- v u . EricOik L. Bradley, Ph. D. C. RicnardTTferriiah, Ph. ■W)D. fl&itjh (- f- Robert E. u. Black, Phi D. ACKNOWLEDGMENTS The author would like to express his appreciation to Dr.
    [Show full text]