All-Dielectric Color Filter with Ultra-Narrowed Linewidth

Total Page:16

File Type:pdf, Size:1020Kb

All-Dielectric Color Filter with Ultra-Narrowed Linewidth micromachines Article All-Dielectric Color Filter with Ultra-Narrowed Linewidth Kai Xu 1, Yanlong Meng 1,2,* , Shufen Chen 2, Yi Li 1, Zhijun Wu 3 and Shangzhong Jin 1 1 College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; [email protected] (K.X.); [email protected] (Y.L.); [email protected] (S.J.) 2 Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China; [email protected] 3 Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China; [email protected] * Correspondence: [email protected]; Tel.: +86-571-87676264 Abstract: In this paper, a transmissive color filter with an ultra-narrow full width at half of the maximum is proposed. Exploiting a material with a high index of refraction and an extremely low extinction coefficient in the visible range allows the quality factor of the filter to be improved. Three groups of GaP/SiO2 pairs are used to form a Distributed Brag reflector in a symmetrical Fabry-Pérot cavity. A band-pass filter which is composed of ZnS/SiO2 pairs is also introduced to further promote the purity of the transmissive spectrum. The investigation manifests that a series of tuned spectrum with an ultra-narrow full width at half of the maximum in the full visible range can be obtained by adjusting the thickness of the SiO2 interlayer. The full width at half of the maximum of the transmissive spectrum can reach 2.35 nm. Simultaneously, the transmissive efficiency in the full visible range can keep as high as 0.75. Our research provides a feasible and cost-effective way for realizing filters with ultra-narrowed linewidth. Citation: Xu, K.; Meng, Y.; Chen, S.; Li, Y.; Wu, Z.; Jin, S. All-Dielectric Keywords: color filter; ultra-narrow linewidth; distributed Bragg reflection (DBR) Color Filter with Ultra-Narrowed Linewidth. Micromachines 2021, 12, 241. https://doi.org/10.3390/ mi12030241 1. Introduction Color filter is a kind of optical device which plays a significant role in many industrial Academic Editor: Patrice Salzenstein fields, such as spectroscopy instruments, imaging sensors, and displays [1–4]. The precision and sensibility of many optical systems used in those fields are mainly decided by such Received: 17 January 2021 an optical device. Generally, there are two types of optical filters: reflective filter and Accepted: 24 February 2021 transmissive filter [5]. Usually, the reflective filter is realized by a perfect absorber, of which Published: 27 February 2021 the filtered wavelengths are fully absorbed. As a result, its function is embodied in the reflective characteristic. On the contrary, the filtering function of a transmissive filter is Publisher’s Note: MDPI stays neutral obtained by permitting the required wavelengths to pass through. In comparison with with regard to jurisdictional claims in the reflective filter, the transmissive filter is proper to be used in displays, charge-coupled published maps and institutional affil- devices, and hyperspectral imaging. With respect to the transmissive filter, the quality iations. factor or the full width at half of the maximum (FWHM) of the transmissive spectrum is a principal characteristic if we want a filter with high accuracy and resolution [3]. In addition, the efficiency of the filter is also an important characteristic that should be considered. That is because a higher transmittance means a better energy use of incident light, which will be Copyright: © 2021 by the authors. beneficial to reduce the dissipation of power and obtain a high intensity of the signal in Licensee MDPI, Basel, Switzerland. optical systems using these filters. This article is an open access article Up to now, there have been many reports on filters realized by surface plasmons [6–11], distributed under the terms and Fabry–Pérot (FP) microcavities [12–21], grating guided-mode resonance [22–28], and Mie conditions of the Creative Commons scattering [29–35]. However, high quality-factor filters realized by surface plasmons or Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ Mie scattering always involve in many sophisticated nanostructures, such as nanohole 4.0/). array metal films [10,36], metal grating [23,37], and nanoparticle arrays. In comparison, Micromachines 2021, 12, 241. https://doi.org/10.3390/mi12030241 https://www.mdpi.com/journal/micromachines Micromachines 2021, 12, x FOR PEER REVIEW 2 of 12 Micromachines 2021, 12, 241 2 of 12 array metal films [10,36], metal grating [23,37], and nanoparticle arrays. In comparison, the FP cavity based on multilayered thin films presents many advantages, such as easy to the FP cavity based on multilayered thin films presents many advantages, such as easy to bebe fabricated, fabricated, facilitating facilitating large-scale large-scale producti production.on. In In recent recent years, years, there there have have been been a a large numbernumber of of reports reports on on the the design design of of filters filters base basedd on on the the FP FP cavity cavity [16,20,21,38–41]. [16,20,21,38–41 ].Using Using a dielectrica dielectric layer layer sandwiched sandwiched by by two two metallic metallic layers layers to to form form an an FP FP cavity cavity is is a a convenient way,way, which is also also named named as as metal-dielectric-metal metal-dielectric-metal (MDM) (MDM) structure. structure. However, However, the the strong strong absorptionabsorption of of metallic metallic layers layers limits limits the the quality quality factor factor [39]. [39]. To To further further improve improve the the quality quality factorfactor of of such such structure, structure, a a distributed distributed Bragg Bragg reflection reflection (DBR) (DBR) is is a a preferable candidate to to substitutesubstitute the the metallic metallic reflective reflective mirror. mirror. Sinc Sincee the the DBR DBR structure structure is fabricated by various dielectricdielectric layers, layers, the the absorption absorption in in metallic metallic layers layers can can be beavoided. avoided. So far, So there far, there are still are few still reportsfew reports on filters on filters with withextremely extremely narrow narrow FWHM FWHM (<10 nm) (<10 in nm) the in visible the visible range range with a with rela- a tivelyrelatively simple simple DBR DBR structure. structure. InIn this this paper, paper, we we propose propose a a transmission filter filter structure structure based based on on an an FP FP cavity. cavity. The The reflectivereflective mirror mirror is is composed composed of of GaP/SiO GaP/SiO2 etalon.2 etalon. As a As direct a direct bandgap bandgap semiconductor semiconductor ma- terialmaterial with with a bandgap a bandgap of 2.26 of 2.26eV, GaP eV, GaP has hasa high a high refractive refractive index index in the in visible the visible range range and canand also can be also prepared be prepared by low-temperature by low-temperature atomic layer atomic deposition layer deposition technology technology or chemical or vaporchemical deposition vapor deposition technology, technology, which is which compatible is compatible with other with thin-film other thin-film deposition deposition pro- cessingprocessing [42]. [42 In]. addition, In addition, the the absorption absorption coefficient coefficient is isclose close to to zero zero when when the the wavelength wavelength isis longer longer than than 470 nm. A multilayer composed ofof ZnS/SiOZnS/SiO22 pairspairs is is used used as as a band-pass filterfilter to to improve improve the the quality quality of of the the spectrum. spectrum. Since Since the the materials materials used used have have relatively relatively small small absorptionabsorption in in the the visible visible range, range, it it is is expect expecteded to to obtain obtain a a smaller smaller FWHM FWHM through through structural structural design.design. This This research research not not only only contributes contributes to to the the preparation preparation of of large-area, large-area, high-resolution high-resolution transmissivetransmissive filters filters but but also also helps helps expand expand the the application range of high-refractive-index semiconductorsemiconductor materials materials in in the the optical optical field. field. 2.2. Simulation Simulation Models Models TheThe simulated simulated structure structure in in this this paper paper is is shown shown in Figure 11.. TheThe lightlight incidentsincidents fromfrom thethe top top of of the the device device and and outputs outputs from from a a glass glass su substrate.bstrate. As As shown shown in in Figure Figure 11,, the device’s structurestructure can can be be divided divided into into two two components components—a—a symmetrical symmetrical FP FP cavity cavity and and a a band-pass band-pass filter. The FP cavity is realized by two DBRs and a SiO interlayer. The DBR consists of filter. The FP cavity is realized by two DBRs and a SiO2 interlayer. The DBR consists of several groups of GaP/SiO pairs. The thicknesses of GaP and SiO in each group and several groups of GaP/SiO2 pairs.2 The thicknesses of GaP and SiO2 in2 each group and the numberthe number of groups of groups have have been been optimized optimized for obtaining for obtaining a transmissive a transmissive spectrum spectrum with with an an ultra-narrow FWHM and high intensity. The ZnS/SiO2 multilayer is set on top of the ultra-narrow FWHM and high intensity. The ZnS/SiO2 multilayer is set on top of the cavity cavity as a band-pass filter for the purpose of improving the purity of the transmissive as a band-pass filter for the purpose of improving the purity of the transmissive spectrum.
Recommended publications
  • Dispersion and Filters
    Optical Filters: Dispersion and Filters Turan Erdogan, PhD (CTO and Co-founder) Semrock, A Unit of IDEX Corporation May 31, 2011 www.semrock.com Dispersion matters sometimes • Often we can sufficiently characterize the spectral performance of an optical filter by determining simply the amount of light intensity (I) it transmits (T(λ)) and it reflects (R(λ)) • T and R are called the “intensity transmission” and “intensity reflection” coefficients filter Iin IT = T(l)Iin IR = R(l)Iin 2 When dispersion matters • However, if the filter is used in an optical system that is sensitive to the phase of the light, we must use the “amplitude transmission” (t exp(iφt)) and “amplitude reflection” (r exp(iφr)) coefficients • t and r determine the amplitude of the electric field of the light that is transmitted and reflected, respectively, and φt and φr determine the change in phase of the electric field • The transmitted and reflected intensity is proportional to the square of the electric field filter 2 Iin = |Ein| phase Ein phase sensitive sensitive optical optical if (l) 2 Et = t(l)e t Ein IT = |Et| 2 system if (l) system IR = |Er| Er = r(l)e r Ein 3 When dispersion matters • Examples of cases when and where phase matters and the amplitude (rather than intensity) coefficients must be used include: . The filter is used in one arm of an interferometer, such that the light transmitted through or reflected off of the filter is coherently combined with light from the other arm or from elsewhere in the system . The filter is used to transmit or reflect a short pulse (<< 1 picosecond) such that its phase can cause the pulse to be chirped and therefore broadened or distorted filter 2 Iin = |Ein| phase Ein phase sensitive sensitive optical optical if (l) 2 Et = t(l)e t Ein IT = |Et| 2 system if (l) system IR = |Er| Er = r(l)e r Ein 4 Impact of optical filter dispersion • Consider the impact of dispersion on a short pulse reflected off of a filter with amplitude reflection coefficient r exp(iφ ) r filter .
    [Show full text]
  • F I L T E R K
    FILTERKIT 322 Woodwork Lane Palatine IL 60067 P: 847-359-3550 F: 847-359-3567 v2.1 [email protected] June16, 2009 www.midopt.com ABOUT MIDWEST OPTICAL SYSTEMS FK100 FILTER KIT CONTENTS ARTICLES Founded in 1988 as a manufacturer of custom precision Our continued commitment to optical components and systems, we have since been innovation has lead to the rotating Machine Vision Filters An overview involved exclusively in the design, manufacture, import Right Angle Attachment (left) that gives you more options for placing and export of vision-specific elements used by a diverse cameras in your system, and the Types of Filters The 8 major types of filters produced by MidOpt for machine vision applications variety of industries and end users. Over time, the company multi-purpose Slip Mount that lets has evolved and is now recognized worldwide as the premier you add filters to lenses when Machine v/s Photographic Filters Why photographic filters are not suitable for machine vision operations resource for filters, lenses and accessories used in industrial (1) there are no filter threads Testing with Filters Testing the effects of filtering and monochromatic lighting imaging applications. and (2) when a filter is desired for use on a wide- Increase Resolution Filters with High-Resolution and Telecentric Lenses; Chromatic Aberration By combining this extensive optics background with our angle lens. expertise in machine vision imaging, MidOpt continues Filter Applications UV Fluorescence, Polarizing, IR Blocking and Light Balancing Filters to develop economical and solutions for industrial image processing that are simply not found elsewhere. We provide FILTER NO.
    [Show full text]
  • UV Optical Filters and Coatings
    UV Optical Filters and Coatings BARR PRECISION OPTICS & THIN FILM COATINGS Materion Barr Precision Optics & Thin Film Coatings is a leading manufacturer and supplier of precision optical filters, hybrid circuits, flexible thin films and custom thin film coating services. We offer coating solutions for manufacturers in the defense, commercial, space, science, astronomy and thermal imaging markets. UltraViolet (UV) Optical Filters and Coatings Materion offers Ultraviolet (UV) optical filters and coatings used Material Options Include: in a wide variety of existing and emerging UV-based applications. n Metal-Dielectric Bandpass Filters, fully blocked from Whether the requirement is for small, prototype UV filter quantity, a the UV to IR “one-of-a-kind” coated optic, or for large-scale volume manufactur- n UVA, UVB Filters - fully blocked ing associated with an OEM application, Materion is equipped to n UV Filter Arrays, Discrete and Patterned meet the need. With Materion’s approach to filter design and manu- n UV Bandpass Filters with high transmission – facture, our filter design engineers work closely with our customers’ made with Environmentally-Durable Oxide Films optical system designers throughout the filter development process. n Mercury-line Isolation Filters such as i-line and g-line Filters The optical filters and coatings that result from this collaborative n AR-Coatings for UV Spectral Range process often serve to optimize the performance characteristics n UV Laser Bandpass Filters of our customers’ instruments and applications. When it comes to filter design and manufacture in the UV spectral range, Materion has n Solderable-metalized coatings developed an extensive library of manufacturing plans for UV filters n Wide UV Passband Filters (such as filters in UVC) and coatings which can be deployed or tailored to produce optical blocked for use with SiC or GaN Detectors filters, that best match customer requirements.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0258661 A1 Jousse Et Al
    US 20130258661A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0258661 A1 Jousse et al. (43) Pub. Date: Oct. 3, 2013 (54) WHTE LED LIGHTING DEVICE AND A Publication Classification LIGHTINGAPPLIANCE (51) Int. Cl. (71) Applicant: MAQUET SAS, Ardon (FR) F2IV 9/10 (2006.01) F2IV33/00 (2006.01) (72) Inventors: Robin Jousse, La Chapelle Saint (52) U.S. Cl. Mesmin (FR); Cécilia Valteau, Ligny Le CPC ............... F2IV 9/10 (2013.01); F2IV33/0068 Ribault (FR); Lionel Comte, La (2013.01) Chapelle Saint Mesmin (FR) USPC ........................................... 362/235; 362/293 (57) ABSTRACT An LED lighting device (6) having an LED (8) emitting white (73) Assignee: MAQUET SAS, Ardon (FR) light and optical filter means (12) suitable for filtering the white light emitted by the LED (8). The optical filter means Appl. No.: 13/793.288 comprise at least two optical filters (12) that have different (21) transmission coefficients and that are positionable to filter the light emitted by the LED (8) individually. The lighting device (22) Filed: Mar 11, 2013 (6) includes a power supply unit (10) suitable for delivering different power supply currents to the LED (8) depending on (30) Foreign Application Priority Data whether one or the other of the optical filters (12) is positioned to filter the light from the LED (8), so as to modify the color Mar. 27, 2012 (FR) ...................................... 12 52735 temperature of the light emitted by the LED (8). Patent Application Publication Oct. 3, 2013 Sheet 1 of 3 US 2013/0258661 A1 S50 8 750 850 Wavelength an Patent Application Publication Oct.
    [Show full text]
  • Full Text [PDF]
    IPASJ International Journal of Electrical Engineering (IIJEE) Web Site: http://www.ipasj.org/IIJEE/IIJEE.htm A Publisher for Research Motivation ........ Email:[email protected] Volume 5, Issue 8, August 2017 ISSN 2321-5984 Spectral and Thermal Effects on the Transmission Modulation Depth and Attenuation Level Estimation of High Density Optical Filters Mr. M.K. Mathur JNTUH College of Engineering, Hyderabad ABSTRACT There are many operating parameters describing optical filter properties such as the amount absorbed electromagnetic radiation which depends on the operating signal wavelength; the amount of the absorbing material in the radiation path (filter thickness); and the absorption coefficient of the material at that wavelength. This paper has presented fused silica (SiO2) glass, polystyrene (PS) plastic and arsenide trisulfide (AS2 S3) glass band pass optical filters for visible and near infrared spectrum regions over wide range of the affecting parameters. Filter transmittance, filter optical density, attenuation level or blocking level, filter correlation factor, and transmission modulation depth are the major interesting design parameters under room temperature and high temperature effects. 1. INTRODUCTION Optical filters are devices which selectively transmit light of certain properties while blocking (absorbing) the reminder [1]. In general they’re sensitive to light of particular wavelengths (and in consequence color) or range of wavelengths. This property makes optical filters often used in many industrial applications. In many branches of industry source emitting intense non-visible radiation (for example white hot metal or glass) has to be monitored. Optical filters are often used for such applications. In such cases infrared (IR) or heat absorbing filters are used in order to block mid infrared wavelengths (thermal radiation) but allow visible light to be transmitted.
    [Show full text]
  • Schott Filter Catalog
    Definitions Glass Filters 2009 OPTICAL FILTERS TABLE OF CONTENTS Table of Contents Foreword ....................................................................................... 4 1. General information on the catalog data ..................................... 5 2. SCHOTT glass filter catalog: product line ..................................... 6 3. Applications for SCHOTT glass filters ............................................ 7 4. Material: filter glass ..................................................................... 10 4.1 Group names ................................................................................ 10 4.2 Classification ................................................................................. 10 4.2.1 Base glasses .................................................................................. 10 4.2.2 Ionically colored glasses ................................................................. 10 4.2.3 Colloidally colored glasses ............................................................. 11 4.3 Reproducibility of transmission ...................................................... 11 4.4 Thermal toughening ..................................................................... 11 5. Filter glass properties .................................................................. 13 5.1 Mechanical density ........................................................................ 13 5.2 Transformation temperature .......................................................... 13 5.3 Thermal expansion .......................................................................
    [Show full text]
  • Optical Filter Glass
    Optical Filter Glass Product Information SCHOTT offers one of the world’s largest portfolios of optical filter glasses for a full spectral solution for your requirements. SCHOTT’s optical filter glasses include the following filter types in the wave- length range above 200 nm: • Bandpass filters • Longpass filters • Shortpass filters • Neutral density filters • Contrast enhancement filters • Night Vision compatible filters • Multiband filters Advantages • High transmittance • High blocking • Spectral properties are independent on angle of incidence • Superior quality, reliability and durability Quality Assurance Forms of Supply Quality control is based on statistical • Polished plates according to customers request, typically up to 200 mm x 200 mm process control as well as on rigorous • Polished filters also available as coated or framed parts reflecting customer’s final inspection. Measurement instru- specifications ments include a broad range of spec- • Larger dimensions upon request trophotometers, vision systems, etc. Market Segments Application Support Reliable manufacturing with strong technical glass expertise enables SCHOTT to SCHOTT is “Your Partner for Excellence serve the following markets: in Optics” and a sparing partner to de- velop, design and choose the right filter Aviation Homeland Security Law Enforcement for your requirements. Please contact us Medical Pharmaceutical Life Science with your specifications. Automotive Consumer Optics Industrial Version September 2018 | SCHOTT Advanced Optics reserves the right to make
    [Show full text]
  • Optical Filter Glass
    Optical Filter Glass Product Information SCHOTT offers one of the world’s largest portfolios of optical filter glasses for a full spectral solution for your requirements. SCHOTT’s optical filter glasses include the following filter types in the wave- length range above 200 nm: • Bandpass filters • Longpass filters • Shortpass filters • Neutral density filters • Contrast enhancement filters • Night Vision compatible filters • Multiband filters Advantages • High transmittance • High blocking • Filter curve hardly depending on light angle • Superior quality, reliability and durability Quality Assurance Forms of Supply Quality control is based on statistical • Polished plates according to customers request, typically up to 200 mm x 200 mm process control as well as on rigorous • Polished filters also available as coated or framed parts reflecting customer’s final inspection. Measurement instru- specifications ments include a broad range of spec- • Larger dimensions upon request trophotometers, vision systems, etc. Market Segments Application Support Reliable manufacturing with strong technical glass expertise enables SCHOTT to SCHOTT is “Your Partner for Excellence serve the following markets: in Optics” and a sparing partner to de- velop, design and choose the right filter Aviation Homeland Security Law Enforcement for your requirements. Please contact us Medical Pharmaceutical Life Science with your specifications. Automotive Consumer Optics Industrial Version May 2013 Version Advanced Optics SCHOTT AG Hattenbergstrasse 10 55122 Mainz Germany
    [Show full text]
  • Optical Filters Go Deeper
    OpticalOptical FiltersFilters GoGo DeeperDeeper A new generation of optical filters benefits optical applications in the mid-UV. by Dr. Turan Erdogan and Dr. Atul Pradhan, Semrock Inc. he importance of optical ap- and/or multiple laminated absorb- other type of ion source and directed plications in the middle-ultra- ing and transparent glass substrates at a metal or metal-oxide target. With T violet spectral region — be- cannot withstand the intense ener- sufficient energy, atoms are sput- tween about 200 and 320 nm — con- gies of illumination at mid-UV wave- tered from the surface of the target, tinues to increase with the advent of lengths. Hybrid metal-dielectric fil- where they subsequently migrate and new excitation light sources in this ters also have poor optical damage then deposit onto a nearby glass sub- range, also identified as the UVC (200 thresholds, and inadequately low strate by random diffusion (Figure to 280 nm) and UVB (280 to 320 nm) transmission and edge steepness. 1). The deposition is further assisted bands. Examples of new sources in- Optical filters with good perfor- by a secondary ion gun, which ac- clude more efficient mid-UV lasers, mance in the mid-UV are crucial for celerates a mixture of inert ions di- AlGaN LEDs and more conventional enabling important new instruments rectly onto the substrate to densify based on applications including bio- and compact the coating films. O + broadband sources such as high- 2 pressure mercury and xenon arc chemical absorption, fluorescence ions often are introduced into the lamps with improved efficiency and and spectroscopy, as well as for re- deposition region near the surface longer lifetimes.
    [Show full text]
  • Gaining High Resolution Measurements of Optical Filters in the NIR Range with the LAMBDA 1050 UV/Vis/NIR
    APPLICATION NOTE UV/Vis/NIR Spectroscopy Authors: Christopher Lynch PerkinElmer, Inc. Shelton, CT Gaining High Resolution Measurements of Optical The most common measurement for Filters in the NIR Range optical filter quality testing is done in transmission mode with the results With the LAMBDA 1050 typically displayed in %T. The measurement may be performed at any UV/Vis/NIR angle of incidence required by the filter design. The angle of incidence light used can range from normal to greater than 60 ° with 45 ° being one of the most common requirements. When measurements are to be performed at angles other than normal, typically considered to be between 5 °- 8 °, polarization affects need to be considered. All modern high performance spectrophotometers use reflective gratings to disperse the source energy into specific wavelengths. This process will create strongly polarized light which will be used for sample analysis. For this reason, to achieve the truest results a depolarizer should be used at angles higher than 8 ° to measure a sample under random polarization conditions. If specific angles of polarization are required by the analysis, a polarizer should be added to allow the specific angle of polarization to be measured. This could range from S to P polarization or any angle between. Optical filter types and design requirements vary widely from Optical filters have many functions, including color correction, simple neutral density filters to the most complex multi layer used to improve color balance in many optical systems, to bandpass designs. All have specific design requirements and all neutral density filters that produce specific reduction in the require spectroscopic analysis to validate designs and for quality level of transmitted light.
    [Show full text]
  • Optical Filter Glass 2020
    Advanced Optics SCHOTT AG Hattenbergstrasse 10 55122 Mainz Germany Phone +49 (0)6131/66-1812 Optical Filter [email protected] Glass www.schott.com/ advanced_optics 2020 10431 ENGLISH 01/2020 kn/schmidt Printed in Germany SCHOTT Optical Filter Glass 2020 Optical Filter Glass 2 SCHOTT is a leading international technology group in the areas of specialty glass and glass- ceramics. With more than 130 years of outstanding development, materials and technology expertise we offer a broad portfolio of high-quality products and intelligent solutions that contribute to our customers’ success. SCHOTT Advanced Optics, with its deep technological expertise, is a valuable partner for its customers in developing products and customized solutions for applications in optics, lithography, astronomy, opto-electronics, life sciences, and research. With a product portfolio of more than 120 optical glasses, special materials and components, we master the value chain: from customized glass development to high-precision optical product finishing and metrology. SCHOTT: Your Partner for Excellence in Optics. 3 4 Contents Part I · Optical Filter Glass – Description 3 Optical properties ......................................18 3.1 Refractive index .......................................... 18 3.2 Reflection loss at the glass-air interface ................ 18 Foreword ......................................................... 8 3.3 Transmittance and internal transmittance ............. 19 3.4 Derived optical filter data ...............................21 Webshop
    [Show full text]
  • Translucency Perception: a Review
    Journal of Vision (2021) 21(8):4, 1–41 1 Translucency perception: A review Norwegian University of Science and Technology, Davit Gigilashvili Department of Computer Science, Gjøvik, Norway Norwegian University of Science and Technology, Jean-Baptiste Thomas Department of Computer Science, Gjøvik, Norway Norwegian University of Science and Technology, Jon Yngve Hardeberg Department of Computer Science, Gjøvik, Norway Norwegian University of Science and Technology, Marius Pedersen Department of Computer Science, Gjøvik, Norway Translucency is an optical and a perceptual phenomenon Internationale de l’Eclairage) total appearance “points that characterizes subsurface light transport through out the visual aspects of objects and scenes” (Pointer, objects and materials. Translucency as an optical 2006). Translucency is among the most essential visual property of a material relates to the radiative transfer attributes of appearance, along with color, gloss, and inside and through this medium, and translucency as a texture (Pointer, 2006; Eugène, 2008), remaining the perceptual phenomenon describes the visual sensation least studied one among those (Anderson, 2011). experienced by humans when observing a given material Although the color information incident on the human under given conditions. The knowledge about the visual retina encodes important information about the objects mechanisms of the translucency perception remains and materials, overall sensation also depends “on the limited. Accurate prediction of the appearance of the appearance of that colour due to the relationship translucent objects can have a significant commercial between the light transmitted, the light reflected, and impact in the fields such as three-dimensional printing. the light scattered by the body of the object” (Pointer, However, little is known how the optical properties of a material relate to a perception evoked in humans.
    [Show full text]