An Investigation of the Performance Potential of A

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of the Performance Potential of A AN INVESTIGATION OF THE PERFORMANCE POTENTIAL OF A LIQUID OXYGEN EXPANDER CYCLE ROCKET ENGINE by DYLAN THOMAS STAPP RICHARD D. BRANAM, COMMITTEE CHAIR SEMIH M. OLCMEN AJAY K. AGRAWAL A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Aerospace Engineering and Mechanics in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2016 Copyright Dylan Thomas Stapp 2016 ALL RIGHTS RESERVED ABSTRACT This research effort sought to examine the performance potential of a dual-expander cycle liquid oxygen-hydrogen engine with a conventional bell nozzle geometry. The analysis was performed using the NASA Numerical Propulsion System Simulation (NPSS) software to develop a full steady-state model of the engine concept. Validation for the theoretical engine model was completed using the same methodology to build a steady-state model of an RL10A-3- 3A single expander cycle rocket engine with corroborating data from a similar modeling project performed at the NASA Glenn Research Center. Previous research performed at NASA and the Air Force Institute of Technology (AFIT) has identified the potential of dual-expander cycle technology to specifically improve the efficiency and capability of upper-stage liquid rocket engines. Dual-expander cycles also eliminate critical failure modes and design limitations present for single-expander cycle engines. This research seeks to identify potential LOX Expander Cycle (LEC) engine designs that exceed the performance of the current state of the art RL10B-2 engine flown on Centaur upper-stages. Results of this research found that the LEC engine concept achieved a 21.2% increase in engine thrust with a decrease in engine length and diameter of 52.0% and 15.8% respectively compared to the RL10B-2 engine. A 5.89% increase in vacuum specific impulse was also observed. The implications of these results could lead to significant launch cost savings and replacement of aging expander cycle technology in the rocket propulsion industry. ii In order to fully validate the results of this research, more knowledge is required regarding the heat transfer characteristics of supercritical oxygen for rocket thrust chamber cooling. Future work in this topic will focus on experimental LOX heat transfer research and model optimization to improve heat transfer estimations in the baseline model developed in this research and further explore the optimal performance potential and limitations of the LEC engine. iii DEDICATION This thesis is dedicated to my family, friends, and mentors that have supported me through the process of writing this thesis and throughout my entire education. iv LIST OF ABBREVIATIONS AND SYMBOLS A Cross-sectional area Ac Combustion chamber average cross-sectional area Ach Cooling channel area �! Nozzle exit area AFIT Air Force Institute of Technology Ainj Injector face area ∗ �! �� � Nozzle throat area AUSEP Advanced Upper Stage Engine Program a Gear ratio or speed of sound SA or As Surface Area CEA (NASA) Chemical Equilibrium with Applications CPS Cryogenic Propulsion Stage �! Constant pressure specific heat CV Cooling Volume c General constant �∗ Characteristic velocity D Diameter Dc Cooling channel diameter for Colburn Equation DEAN Dual-Expander Aerospike Nozzle v Dhyd Hydraulic diameter DoD Department of Defense D-W Darcy Weisbach Equation EELV Evolved Expendable Launch Vehicle EOS Equation of State F Thrust FPL Full Power Level f Fuel/Oxidizer ratio or general function fD Darcy friction factor g0 Gravitational acceleration constant Hch Cooling channel representative height Hp Pump head h Enthalpy he Enthalpy at exit h0 Enthalpy at entrance hgr Bartz gas reference heat transfer coefficient hl Colburn liquid heat transfer coefficient Δh Change in enthalpy I Impulse �!" Specific impulse k Loss coefficient kcf Colburn heat transfer constant kgr Combustion gas reference constant vi L Length L* Characteristic length Lc Combustion chamber length Lf Fuel pump torque LEC LOX Expander Cycle LeRC (NASA) Lewis Research Center LH2 Liquid Hydrogen LOX or LO2 Liquid Oxygen Lox Ox pump torque Lp Pump torque LRPS Liquid Rocket Propulsion System Lt Turbine torque Δl Station segment length M Mach number Me Exit Mach number MFSOV Main Fuel Shut-Off Valve �!"# Molecular weight MOC Method of Characteristics MOCV Main Oxidizer Control Valve � Mass flow rate m0 Initial mass mf Final mass N Number of injector elements or number of cooling channels vii NASA National Aeronautics and Space Administration NIST National Institute of Standards and Technology NPSS Numerical Propulsion System Simulation Np Pump shaft speed NRA NASA Research Announcement Nt Turbine shaft speed O/F Oxidizer to Fuel ratio (Mixture Ratio) P Pressure or perimeter �! Chamber pressure �!! Cooling channel perimeter �! Nozzle exit pressure Ploss Losses in pump pressure P0 or Pa Ambient pressure Pp,exit Pump exit pressure P&W Pratt and Whitney (Rocketdyne) ΔPdyn Change in dynamic pressure � Energy flux �!" Rate of energy entering system �!"# Rate of energy exiting system � Specific energy flux R Gas constant Re Reynolds number ROCETS ROCet Engine Transient Simulation Software viii rc Combustion chamber radius �! Nozzle exit radius ∗ �! �� � Nozzle throat radius SLS Space Launch System SSME Space Shuttle Main Engine T Temperature Tcw Cold wall temperature for Colburn Equation Te Exit temperature Tg Gas temperature Tgr Gas reference temperature for Bartz Equation Thw Hot wall temperature for Colburn Equation T/W Thrust-to-Weight Ratio t Time tch Cooling channel wall thickness V Velocity Vc Combustion chamber volume Veq Equivalent velocity ΔV Change in velocity �!"## Power losses in turbopump �! Pump power �! Turbine power xstep Numerical integration step ε Expansion ratio ix εc Chamber ratio εn Nozzle expansion ratio � Ratio of specific heats ηc Combustion chamber efficiency ηp Pump efficiency ηt Turbine efficiency λ Nozzle efficiency µ Dynamic viscosity µgr Combustion gas reference constant ρ Density ϕB Bartz heat transfer correction factor ϕcurv Colburn heat transfer correction factor x ACKNOWLEDGMENTS It is with great pleasure that I thank the family, friends, and faculty that have assisted me in this research. In particular, I am indebted to Lt. Col. (Ret.) Dr. Richard Branam, the chairman of my thesis committee, for his guidance and wisdom through the research process. I would also like to thank the other members of my thesis committee, Dr. Semih Olcmen and Dr. Ajay Agrawal, for their time in reviewing my thesis and their valuable recommendations. My gratitude is particularly extended to my parents, Denny and Nancy Stapp for providing me with the work ethic and financial support to get me through the past 17 years of school. I would not be where I am today without their wisdom and encouragement. I would also like to thank my fiancé, Naz Syed, for her continuing moral support throughout my college career and in writing this thesis. Finally, I am grateful to my friends and fellow graduate students who toiled through this effort alongside me and set a high bar for me to strive after. xi TABLE OF CONTENTS ABSTRACT .................................................................................................................................... ii DEDICATION ............................................................................................................................... iv LIST OF ABBREVIATIONS AND SYMBOLS ........................................................................... v ACKNOWLEDGMENTS ............................................................................................................. xi LIST OF TABLES ........................................................................................................................ xv LIST OF FIGURES .................................................................................................................... xvii 1 INTRODUCTION .................................................................................................................... 1 1.1 Research Motivation and Concept Overview .................................................................... 1 1.2 Problem Statement ............................................................................................................. 5 1.3 Research Objectives ........................................................................................................... 6 1.4 Document Overview .......................................................................................................... 7 2 BACKGROUND AND PREVIOUS RESEARCH .................................................................. 8 2.1 Demand and Cost Implications for Improvement of LRPS ............................................... 8 2.2 Liquid Rocket Propulsion ................................................................................................ 11 2.2.1 LRPS Design ............................................................................................................. 11 2.2.1.1 Engine Cycles .................................................................................................... 15 2.2.1.2 Nozzle Theory .................................................................................................... 19 2.2.1.3 Combustion Chamber Theory ............................................................................ 24 2.2.1.4 Cooling Jacket Theory ....................................................................................... 34 2.2.1.5
Recommended publications
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • 6. Chemical-Nuclear Propulsion MAE 342 2016
    2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20
    [Show full text]
  • Materials for Liquid Propulsion Systems
    https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost.
    [Show full text]
  • Enhancement of Volumetric Specific Impulse in HTPB/Ammonium Nitrate Mixed
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 12-2016 Enhancement of Volumetric Specific Impulse in TPB/H Ammonium Nitrate Mixed Hybrid Rocket Systems Jacob Ward Forsyth Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Propulsion and Power Commons Recommended Citation Forsyth, Jacob Ward, "Enhancement of Volumetric Specific Impulse in TPB/AmmoniumH Nitrate Mixed Hybrid Rocket Systems" (2016). All Graduate Plan B and other Reports. 876. https://digitalcommons.usu.edu/gradreports/876 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ENHANCEMENT OF VOLUMETRIC SPECIFIC IMPULSE IN HTPB/AMMONIUM NITRATE MIXED HYBRID ROCKET SYSTEMS by Jacob W. Forsyth A report submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Aerospace Engineering Approved: ______________________ ____________________ Stephen A. Whitmore Ph.D. David Geller Ph.D. Major Professor Committee Member ______________________ Rees Fullmer Ph.D. Committee Member UTAH STATE UNIVERSITY Logan, Utah 2016 ii Copyright © Jacob W. Forsyth 2016 All Rights Reserved iii ABSTRACT Enhancement of Volumetric Specific Impulse in HTPB/Ammonium Nitrate Mixed Hybrid Rocket Systems by Jacob W. Forsyth, Master of Science Utah State University, 2016 Major Professor: Dr. Stephen A. Whitmore Department: Mechanical and Aerospace Engineering Hybrid rocket systems are safer and have higher specific impulse than solid rockets. However, due to large oxidizer tanks and low regression rates, hybrid rockets have low volumetric efficiency and very long longitudinal profiles, which limit many of the applications for which hybrids can be used.
    [Show full text]
  • Interstellar Probe on Space Launch System (Sls)
    INTERSTELLAR PROBE ON SPACE LAUNCH SYSTEM (SLS) David Alan Smith SLS Spacecraft/Payload Integration & Evolution (SPIE) NASA-MSFC December 13, 2019 0497 SLS EVOLVABILITY FOUNDATION FOR A GENERATION OF DEEP SPACE EXPLORATION 322 ft. Up to 313ft. 365 ft. 325 ft. 365 ft. 355 ft. Universal Universal Launch Abort System Stage Adapter 5m Class Stage Adapter Orion 8.4m Fairing 8.4m Fairing Fairing Long (Up to 90’) (up to 63’) Short (Up to 63’) Interim Cryogenic Exploration Exploration Exploration Propulsion Stage Upper Stage Upper Stage Upper Stage Launch Vehicle Interstage Interstage Interstage Stage Adapter Core Stage Core Stage Core Stage Solid Solid Evolved Rocket Rocket Boosters Boosters Boosters RS-25 RS-25 Engines Engines SLS Block 1 SLS Block 1 Cargo SLS Block 1B Crew SLS Block 1B Cargo SLS Block 2 Crew SLS Block 2 Cargo > 26 t (57k lbs) > 26 t (57k lbs) 38–41 t (84k-90k lbs) 41-44 t (90k–97k lbs) > 45 t (99k lbs) > 45 t (99k lbs) Payload to TLI/Moon Launch in the late 2020s and early 2030s 0497 IS THIS ROCKET REAL? 0497 SLS BLOCK 1 CONFIGURATION Launch Abort System (LAS) Utah, Alabama, Florida Orion Stage Adapter, California, Alabama Orion Multi-Purpose Crew Vehicle RL10 Engine Lockheed Martin, 5 Segment Solid Rocket Aerojet Rocketdyne, Louisiana, KSC Florida Booster (2) Interim Cryogenic Northrop Grumman, Propulsion Stage (ICPS) Utah, KSC Boeing/United Launch Alliance, California, Alabama Launch Vehicle Stage Adapter Teledyne Brown Engineering, California, Alabama Core Stage & Avionics Boeing Louisiana, Alabama RS-25 Engine (4)
    [Show full text]
  • Delta IV Parker Solar Probe Mission Booklet
    A United Launch Alliance (ULA) Delta IV Heavy what is the source of high-energy solar particles. MISSION rocket will deliver NASA’s Parker Solar Probe to Parker Solar Probe will make 24 elliptical orbits an interplanetary trajectory to the sun. Liftoff of the sun and use seven flybys of Venus to will occur from Space Launch Complex-37 at shrink the orbit closer to the sun during the Cape Canaveral Air Force Station, Florida. NASA seven-year mission. selected ULA’s Delta IV Heavy for its unique MISSION ability to deliver the necessary energy to begin The probe will fly seven times closer to the the Parker Solar Probe’s journey to the sun. sun than any spacecraft before, a mere 3.9 million miles above the surface which is about 4 OVERVIEW The Parker percent the distance from the sun to the Earth. Solar Probe will At its closest approach, Parker Solar Probe will make repeated reach a top speed of 430,000 miles per hour journeys into the or 120 miles per second, making it the fastest sun’s corona and spacecraft in history. The incredible velocity trace the flow of is necessary so that the spacecraft does not energy to answer fall into the sun during the close approaches. fundamental Temperatures will climb to 2,500 degrees questions such Fahrenheit, but the science instruments will as why the solar remain at room temperature behind a 4.5-inch- atmosphere is thick carbon composite shield. dramatically Image courtesy of NASA hotter than the The mission was named in honor of Dr.
    [Show full text]
  • Propulsione Aeronautica 2020/2021 Francesco Barato
    PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO MATERIALE DI SUPPORTO FONDAMENTI DI PROPULSIONE AERONAUTICA Thrust 푇 = (푚̇ 푎 + 푚̇ 푓)푉푒 − 푚̇ 푎푉0 + (푝푒 − 푝푎)퐴푒 푇 ≈ 푚̇ 푎(푉푒 − 푉0) + (푝푒 − 푝푎)퐴푒 1 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Ramjet P-270 Moskit (left), BrahMos (right) Turboramjet Pratt & Whitney J-58 turbo(ram)jet 2 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Scramjet 3 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Specific impulse 푇 푉푒 푇 푚̇ 푝 푉푒 − 푉0 퐼푠푝 = = [푠] 푟표푐푘푒푡푠 퐼푠푝 = = [푠] 푎푟 푏푟푒푎푡ℎ푛푔 푚̇ 푝푔0 푔0 푚̇ 푓푔0 푚̇ 푓 푔0 4 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Propulsive efficiency Overall efficiency Overall efficiency with Mach number 5 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Engine bypass ratios Bypass Engine Name Major applications ratio turbojet early jet aircraft, Concorde 0.0 SNECMA M88 Rafale 0.30 GE F404 F/A-18, T-50, F-117 0.34 PW F100 F-16, F-15 0.36 Eurojet EJ200 Typhoon 0.4 Klimov RD-33 MiG-29, Il-102 0.49 Saturn AL-31 Su-27, Su-30, J-10 0.59 Kuznetsov NK-144A Tu-144 0.6 PW JT8D DC-9, MD-80, 727, 737 Original 0.96 Soloviev D-20P Tu-124 1.0 Kuznetsov NK-321 Tu-160 1.4 GE Honda HF120 HondaJet 2.9 RR Tay Gulfstream IV, F70, F100 3.1 GE CF6-50 A300, DC-10-30,Lockheed C-5M Super Galaxy 4.26 PowerJet SaM146 SSJ 100 4.43 RR RB211-22B TriStar 4.8 PW PW4000-94 A300, A310, Boeing 767, Boeing 747-400 4.85 Progress D-436 Yak-42, Be-200, An-148 4.91 GE CF6-80C2 A300-600, Boeing 747-400, MD-11, A310 4.97-5.31 RR Trent 700 A330 5.0 PW JT9D Boeing 747, Boeing 767, A310, DC-10 5.0 6 PROPULSIONE
    [Show full text]
  • Basic Analysis of a LOX/Methane Expander Bleed Engine
    DOI: 10.13009/EUCASS2017-332 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Basic Analysis of a LOX/Methane Expander Bleed Engine ? ? ? Marco Leonardi , Francesco Nasuti † and Marcello Onofri ?Sapienza University of Rome Via Eudossiana 18, Rome, Italy [email protected] [email protected] [email protected] · · †Corresponding author Abstract As present trends in rocket engine development recommend overall simplicity and reliability as the main design driver, while preserving high performance, expander cycle engines based on the oxygen-methane pair have been considered as a possible upper stage option. A closed expander cycle is considered for Vega Evolution upper stage, while there are no studies published in the literature on methane-based expander bleed cycles. A basic cycle analysis is presented to evaluate the performance of an oxygen/methane ex- pander bleed cycle for an engine of 100 kN thrust class. Results show the feasibility of the system and its peculiarities with respect to the better known expander bleed cycle based on hydrogen. 1. Introduction The high chamber pressure required to achieve high specific impulse in liquid propellant rocket engines (LRE), has been efficiently obtained by pump-fed systems. Different solutions have been proposed since the beginning of space age and just a few of them has found its own field of application. In these systems the pumps are driven by gas turbines whose power comes from two possible sources: combustion or cooling system. The different needs for the specific applications (booster, sustainer or upper stage of different classes of rockets) led to classify pump-fed LRE systems in open and closed cycles, which differ because of turbine discharge pressure.14, 16 Closed cycles are those providing the best performance because the whole propellant mass flow rate is exploited in the main chamber.
    [Show full text]
  • Additive Manufacturing Development Methodology for Liquid Rocket Engines
    Additive Manufacturing Development Methodology for Liquid Rocket Engines Quality in the Space and Defense Industry Forum Cape Canaveral, FL March 8, 2016 Jeff Haynes Aerojet Rocketdyne Distribution Statement A: Approved for public release, distribution is unlimited Presentation Outline •The additive manufacturing “opportunity” •Specific additive manufacturing process considerations •Scale up challenges •Aerojet Rocketdyne development and production approach •Considerations and gaps to be closed for production Distribution Statement A: Approved for public release, distribution is unlimited Demonstrated Benefits of Additive Manufacturing Liquid Rocket Engine Attributes Additive Manufacturing Low production volumes Print parts when needed High complexity, compact designs Complexity adds no cost High value = high quality levels Bulk material like wrought not cast Additive Manufacturing • Part count reduction • No plating / no braze • No tooling • 60% lead time savings • 70% cost savings • Reduced weight 9-lbs Heritage Saturn V F1 Gas Generator Injector Printed F1 GG Injector (2009) Early Demonstrated Realization of Potential Distribution Statement A: Approved for public release, distribution is unlimited Demonstrated Benefits of Additive Manufacturing Transforming heritage engines and … enabling new ones 14-inch • Complex injector assemblies diameter Reduce part count Eliminates long lead forgings Eliminates high touch labor machining RS-25 Ball Shaft (left) Eliminates hundreds of braze joints RL10 Main Injector (right) • Sheet
    [Show full text]
  • Methodology for Identifying Key Parameters Affecting Reusability for Liquid Rocket Engines
    Methodology for Identifying Key Parameters Affecting Reusability for Liquid Rocket Engines Presented by: Bruce Askins Rhonda Childress-Thompson Marshall Space Flight Center & Dr. Dale Thomas The University of Alabama in Huntsville Outline • Objective • Reusability Defined • Benefits of Reusability • Previous Research • Approach • Challenges • Available Data • Approach • Results • Next Steps • Summary Objective • To use statistical techniques to identify which parameters are tightly correlated with increasing the reusability of liquid rocket engine hardware. Reusability/Reusable Defined Ideally • “The ability to use a system for multiple missions without the need for replacement of systems or subsystems. Ideally, only replenishment of consumable commodities (propellant and gas products, for instance)occurs between missions.” (Jefferies, et al., 2015) For purposes of this research • Any space flight hardware that is not only designed to perform multiple flights, but actually accomplishes multiple flights. Benefits of Reusability • Forces inspections of returning hardware • Offers insight into how a part actually performs • Allows the development of databases for future development • Validates ground tests and analyses • Allows the expensive hardware to be used multiple times Previous Research – Identification of Features Conducive for Reuse Implementation 1. Reusability Requirement Implemented at the Conceptual Stage 2. Continuous Test Program 3. Minimize Post-Flight Inspections & Servicing to Enhance Turnaround Time 4. Easy Access 5. Longer Service Life 6. Minimize Impact of Recovery 7. Evolutionary vs. Revolutionary Changes MSFC Legacy of Propulsion Excellence (Evolutionary Changes) Saturn V J-2S 1970 1980 1990 2000 2010 2015 Challenges • Engine data difficult to locate • Limited data for reusable engines (i.e. Space Shuttle, Space Shuttle Main Engine (SSME) and Solid Rocket Booster (SRB) • Benefits of reusability have not been validated • Industry standards do not exist Engine Data Available Engine Time from No.
    [Show full text]
  • Space Shuttle Main Engine Orientation
    BC98-04 Space Transportation System Training Data Space Shuttle Main Engine Orientation June 1998 Use this data for training purposes only Rocketdyne Propulsion & Power BOEING PROPRIETARY FORWARD This manual is the supporting handout material to a lecture presentation on the Space Shuttle Main Engine called the Abbreviated SSME Orientation Course. This course is a technically oriented discussion of the SSME, designed for personnel at any level who support SSME activities directly or indirectly. This manual is updated and improved as necessary by Betty McLaughlin. To request copies, or obtain information on classes, call Lori Circle at Rocketdyne (818) 586-2213 BOEING PROPRIETARY 1684-1a.ppt i BOEING PROPRIETARY TABLE OF CONTENT Acronyms and Abbreviations............................. v Low-Pressure Fuel Turbopump............................ 56 Shuttle Propulsion System................................. 2 HPOTP Pump Section............................................ 60 SSME Introduction............................................... 4 HPOTP Turbine Section......................................... 62 SSME Highlights................................................... 6 HPOTP Shaft Seals................................................. 64 Gimbal Bearing.................................................... 10 HPFTP Pump Section............................................ 68 Flexible Joints...................................................... 14 HPFTP Turbine Section......................................... 70 Powerhead...........................................................
    [Show full text]
  • Heavy Lift Launch Vehicles with Existing Propulsion Systems
    SpaceOps 2010 Conference<br><b><i>Delivering on the Dream</b></i><br><i>Hosted by NASA Mars AIAA 2010-2370 25 - 30 April 2010, Huntsville, Alabama Heavy Lift Launch Vehicles with Existing Propulsion Systems Benjamin Donahue1 Lee Brady2 Mike Farkas3 Shelley LeRoy4 Neal Graham5 Boeing Phantom Works, Huntsville, AL 35824 Doug Blue6 Boeing Space Exploration, Huntington Beach, CA 92605 This paper describes Heavy Lift Launch Vehicle concepts that are based on existing propulsion systems. Both In-Line and Sidemount configurations for Crew, Crew plus cargo and Cargo only missions are illustrated. Payload data includes launches to due East LEO, ISS, Trans-Lunar Injection (TLI) and the Earth-Sun L2 point. Engine options include SSME and RS-68 for the Core stage and J-2X and RL-10 engines for Upper stages. Heavy Lift would provide the large volumes and heavy masses required to enable high science return missions, while utilizing proven propulsion elements. I. Introduction Both In-line and Sidemount Heavy Lift Launch Vehicle (HLLV) concepts, utilizing Solid Rocket Booster (SRB) and Space Shuttle Main Engine (SSME) elements, would enable exploration missions1-6 that might otherwise be impractical with current launch vehicles. Potential missions and payloads (Fig. 1) include space telescopes, fuel depots, Mars, Venus, Europa, and Titan sample return vehicles, Crewed Lunar and Near Earth Object (NEO) vehicles, power beaming platforms and others. The use of existing main propulsion systems (SSME, RS-68 engines, SRBs) would minimize the upfront cost and shorten the time to initial operational capability (IOC) of any new HLLV as compared to a similar program with new propulsion elements.
    [Show full text]