Lessons from the First Critical Assessment of Functional Annotation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isyte: Integrated Systems Tool for Eye Gene Discovery
Lens iSyTE: Integrated Systems Tool for Eye Gene Discovery Salil A. Lachke,1,2,3,4 Joshua W. K. Ho,1,4,5 Gregory V. Kryukov,1,4,6 Daniel J. O’Connell,1 Anton Aboukhalil,1,7 Martha L. Bulyk,1,8,9 Peter J. Park,1,5,10 and Richard L. Maas1 PURPOSE. To facilitate the identification of genes associated ther investigation. Extension of this approach to other ocular with cataract and other ocular defects, the authors developed tissue components will facilitate eye disease gene discovery. and validated a computational tool termed iSyTE (integrated (Invest Ophthalmol Vis Sci. 2012;53:1617–1627) DOI: Systems Tool for Eye gene discovery; http://bioinformatics. 10.1167/iovs.11-8839 udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions impli- ven with the advent of high-throughput sequencing, the cated in disease and to prioritize them for further mutational Ediscovery of genes associated with congenital birth defects and functional analyses. such as eye defects remains a challenge. We sought to develop METHODS. Microarray gene expression profiles were obtained a straightforward experimental approach that could facilitate for microdissected embryonic mouse lens at three key devel- the identification of candidate genes for developmental disor- opmental time points in the transition from the embryonic day ders, and, as proof-of-principle, we chose defects involving the (E)10.5 stage of lens placode invagination to E12.5 lens primary ocular lens. Opacification of the lens results in cataract, a leading cause of blindness that affects 77 million persons and fiber cell differentiation. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Proteome Analysis of the HIV-1 Gag Interactome
Virology 460-461 (2014) 194–206 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Proteome analysis of the HIV-1 Gag interactome Christine E. Engeland a, Nigel P. Brown b, Kathleen Börner a,b, Michael Schümann c, Eberhard Krause c, Lars Kaderali d, Gerd A. Müller e, Hans-Georg Kräusslich a,n a Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany b Bioquant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany c Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, D-13125 Berlin, Germany d Institute for Medical Informatics and Biometry (IMB), Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, D-01307 Dresden, Germany e Molecular Oncology, Medical School, University of Leipzig, Semmelweisstraße 14, D-04103 Leipzig, Germany article info abstract Article history: Human immunodeficiency virus Gag drives assembly of virions in infected cells and interacts with host Received 20 January 2014 factors which facilitate or restrict viral replication. Although several Gag-binding proteins have been Returned to author for revisions characterized, understanding of virus–host interactions remains incomplete. In a series of six affinity 6 February 2014 purification screens, we have identified protein candidates for interaction with HIV-1 Gag. Proteins Accepted 19 April 2014 previously found in virions or identified in siRNA screens for host factors influencing HIV-1 replication Available online 10 June 2014 were recovered. Helicases, translation factors, cytoskeletal and motor proteins, factors involved in RNA Keywords: degradation and RNA interference were enriched in the interaction data. Cellular networks of HIV Gag cytoskeleton, SR proteins and tRNA synthetases were identified. -
Discovery of the First Genome-Wide Significant Risk Loci for Attention Deficit/Hyperactivity Disorder
ARTICLES https://doi.org/10.1038/s41588-018-0269-7 Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder Ditte Demontis 1,2,3,69, Raymond K. Walters 4,5,69, Joanna Martin5,6,7, Manuel Mattheisen1,2,3,8,9,10, Thomas D. Als 1,2,3, Esben Agerbo 1,11,12, Gísli Baldursson13, Rich Belliveau5, Jonas Bybjerg-Grauholm 1,14, Marie Bækvad-Hansen1,14, Felecia Cerrato5, Kimberly Chambert5, Claire Churchhouse4,5,15, Ashley Dumont5, Nicholas Eriksson16, Michael Gandal17,18,19,20, Jacqueline I. Goldstein4,5,15, Katrina L. Grasby21, Jakob Grove 1,2,3,22, Olafur O. Gudmundsson13,23,24, Christine S. Hansen 1,14,25, Mads Engel Hauberg1,2,3, Mads V. Hollegaard1,14, Daniel P. Howrigan4,5, Hailiang Huang4,5, Julian B. Maller5,26, Alicia R. Martin4,5,15, Nicholas G. Martin 21, Jennifer Moran5, Jonatan Pallesen1,2,3, Duncan S. Palmer4,5, Carsten Bøcker Pedersen1,11,12, Marianne Giørtz Pedersen1,11,12, Timothy Poterba4,5,15, Jesper Buchhave Poulsen1,14, Stephan Ripke4,5,27, Elise B. Robinson4,28, F. Kyle Satterstrom 4,5,15, Hreinn Stefansson 23, Christine Stevens5, Patrick Turley4,5, G. Bragi Walters 23,24, Hyejung Won 17,18, Margaret J. Wright 29, ADHD Working Group of the Psychiatric Genomics Consortium (PGC)30, Early Lifecourse & Genetic Epidemiology (EAGLE) Consortium30, 23andMe Research Team30, Ole A. Andreassen 31, Philip Asherson32, Christie L. Burton 33, Dorret I. Boomsma34,35, Bru Cormand36,37,38,39, Søren Dalsgaard 11, Barbara Franke40, Joel Gelernter 41,42, Daniel Geschwind 17,18,19, Hakon Hakonarson43, Jan Haavik44,45, Henry R. -
Supporting Information
Supporting Information Whittle et al. 10.1073/pnas.0812894106 SI Text range based on analysis on 1.5% agarose gels after reversal of In Vitro Genomic Selection. Recombinant NFI-1-GST fusion pro- cross-linking. DNA-protein complexes were precipitated with tein was immobilized on Glutathione Sepharose 4B (Amersham) anti-NFI immune serum (5 l) or preimmune serum (5 l) as a and C. elegans genomic DNA was used for in vitro genomic control and 5% of the input sample was set aside. Samples were selection. The fusion protein contained the NFI-1 DNA-binding processed using the ChIP assay kit (Upstate). Following reversal domain and a short downstream region. For NFI-1-GST Sepha- of the cross-links, RNase A and Proteinase K treatments, the rose preparation, 400 ml of induced DH5␣ cells expressing immunoprecipitated DNA was purified using phenol-chloro- NFI-1-GST (plasmid pGEXNFI-1) was extracted in buffer L (25 form, precipitated with ethanol, and dissolved in 50 l of DNase, mM Hepes pH 7.5, 10% sucrose, 0.35 M NaCl, 5 mM DTT, 1 mM Rnase-free water. For ChIP-chip, samples were amplified by PMSF, 0.1% Nonidet P-40 and 2 mg/ml of lysozyme). The extract either ligation mediated PCR (5) or a modified Whole Genome (35 ml) was flash-frozen in 5-ml aliquots and stored at –70 °C. To Amplification protocol [Sigma; (6)] as previously described. immobilize NFI-1-GST protein on Glutathione Sepharose 4B, 5 ml of cell extract was incubated with 65 l (bed volume) of Microarrays and Data Extraction. -
A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort. -
In This Table Protein Name, Uniprot Code, Gene Name P-Value
Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2- -
1471-2105-8-217.Pdf
BMC Bioinformatics BioMed Central Software Open Access GenMAPP 2: new features and resources for pathway analysis Nathan Salomonis1,2, Kristina Hanspers1, Alexander C Zambon1, Karen Vranizan1,3, Steven C Lawlor1, Kam D Dahlquist4, Scott W Doniger5, Josh Stuart6, Bruce R Conklin1,2,7,8 and Alexander R Pico*1 Address: 1Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158 USA, 2Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA, 3Functional Genomics Laboratory, University of California, Berkeley, CA 94720 USA, 4Department of Biology, Loyola Marymount University, 1 LMU Drive, MS 8220, Los Angeles, CA 90045 USA, 5Computational Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63108 USA, 6Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064 USA, 7Department of Medicine, University of California, San Francisco, CA 94143 USA and 8Department of Molecular and Cellular Pharmacology, University of California, San Francisco, CA 94143 USA Email: Nathan Salomonis - [email protected]; Kristina Hanspers - [email protected]; Alexander C Zambon - [email protected]; Karen Vranizan - [email protected]; Steven C Lawlor - [email protected]; Kam D Dahlquist - [email protected]; Scott W Doniger - [email protected]; Josh Stuart - [email protected]; Bruce R Conklin - [email protected]; Alexander R Pico* - [email protected] * Corresponding author Published: 24 June 2007 Received: 16 November 2006 Accepted: 24 June 2007 BMC Bioinformatics 2007, 8:217 doi:10.1186/1471-2105-8-217 This article is available from: http://www.biomedcentral.com/1471-2105/8/217 © 2007 Salomonis et al; licensee BioMed Central Ltd. -
Views for Entrez
BASIC RESEARCH www.jasn.org Phosphoproteomic Analysis Reveals Regulatory Mechanisms at the Kidney Filtration Barrier †‡ †| Markus M. Rinschen,* Xiongwu Wu,§ Tim König, Trairak Pisitkun,¶ Henning Hagmann,* † † † Caroline Pahmeyer,* Tobias Lamkemeyer, Priyanka Kohli,* Nicole Schnell, †‡ †† ‡‡ Bernhard Schermer,* Stuart Dryer,** Bernard R. Brooks,§ Pedro Beltrao, †‡ Marcus Krueger,§§ Paul T. Brinkkoetter,* and Thomas Benzing* *Department of Internal Medicine II, Center for Molecular Medicine, †Cologne Excellence Cluster on Cellular Stress | Responses in Aging-Associated Diseases, ‡Systems Biology of Ageing Cologne, Institute for Genetics, University of Cologne, Cologne, Germany; §Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; ¶Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; **Department of Biology and Biochemistry, University of Houston, Houston, Texas; ††Division of Nephrology, Baylor College of Medicine, Houston, Texas; ‡‡European Molecular Biology Laboratory–European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom; and §§Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany ABSTRACT Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus- expressed -
A Genome-Scale CRISPR/Cas9 Knockout Screening Reveals
www.nature.com/scientificreports OPEN A genome-scale CRISPR/Cas9 knockout screening reveals SH3D21 as a sensitizer for gemcitabine Mohammad Masoudi 1,2,3,4, Motoaki Seki3, Razieh Yazdanparast4*, Nozomu Yachie3 & Hiroyuki Aburatani 1,2* Gemcitabine, 2′,2′-difuoro-2′-deoxycytidine, is used as a pro-drug in treatment of variety of solid tumour cancers including pancreatic cancer. After intake, gemcitabine is transferred to the cells by the membrane nucleoside transporter proteins. Once inside the cells, it is converted to gemcitabine triphosphate followed by incorporation into DNA chains where it causes inhibition of DNA replication and thereby cell cycle arrest and apoptosis. Currently gemcitabine is the standard drug for treatment of pancreatic cancer and despite its widespread use its efect is moderate. In this study, we performed a genome-scale CRISPR/Cas9 knockout screening on pancreatic cancer cell line Panc1 to explore the genes that are important for gemcitabine efcacy. We found SH3D21 as a novel gemcitabine sensitizer implying it may act as a therapeutic target for improvement of gemcitabine efcacy in treatment of pancreatic cancer. Gemcitabine, 2′,2′-difuoro-2′-deoxycytidine (dFdC), is an analogue of deoxycytidine with two fuorine atoms, which is widely used in chemotherapy of solid tumour cancers including pancreas, bladder and breast cancers1. Gemcitabine is administered as a pro-drug and the only reported mechanism for its cellular uptake is transpor- tation by human nucleoside transporter proteins SLC28A1, SLC28A3, SLC29A1 and SLC29A21. Once inside the cell, gemcitabine is phosphorylated to gemcitabine mono-, di- and tri-phosphate by deoxycytidine kinase, cytidine/uridine monophosphate kinase 1 and nucleoside diphosphate kinase, respectively. -
Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts. -
Genome-Scale Analysis Identifies Paralog Lethality As a Vulnerability of Chromosome 1P Loss in Cancer
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Genet Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 December 28. Published in final edited form as: Nat Genet. 2018 July ; 50(7): 937–943. doi:10.1038/s41588-018-0155-3. Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer Srinivas R. Viswanathan1,2,3, Marina F. Nogueira#1,2, Colin G. Buss#4,5, John M. Krill- Burger2, Mathias J. Wawer6, Edyta Malolepsza2,11, Ashton C. Berger1,2, Peter S. Choi1,2,3, Juliann Shih2, Alison M. Taylor1,2,3, Benjamin Tanenbaum2, Chandra Sekhar Pedamallu1, Andrew D. Cherniack2, Pablo Tamayo2,7, Craig A. Strathdee2, Kasper Lage2,11, Steven A. Carr2, Monica Schenone2, Sangeeta N. Bhatia2,3,4,5,8,9,10, Francisca Vazquez2, Aviad Tsherniak2, William C. Hahn1,2,3, and Matthew Meyerson1,2,3,♦ 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA 2Broad Institute of MIT and Harvard, Cambridge, MA, USA 3Harvard Medical School, Boston, MA, USA 4Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA USA 5Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 6Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA 7UCSD Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, California 8Howard Hughes