And Their Parasites: Effects of Parasitic Manipulations and Host Responses on Ant Behavioral Ecology Charissa De Bekker, Ian Will, Biplabendu Das & Rachelle M.M

Total Page:16

File Type:pdf, Size:1020Kb

And Their Parasites: Effects of Parasitic Manipulations and Host Responses on Ant Behavioral Ecology Charissa De Bekker, Ian Will, Biplabendu Das & Rachelle M.M ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 28: 1-24 doi: 10.25849/myrmecol.news_028:001 28 August 2018 Review Article The ants (Hymeno ptera: Formicidae) and their parasites: effects of parasitic manipulations and host responses on ant behavioral ecology Charissa de Bekker, Ian Will, Biplabendu Das & Rachelle M.M. Adams Abstract Ants can display modified behaviors that represent the extended phenotypes of genes expressed by parasites that infect them. In such cases, the modifications benefit the parasite. Alternatively, displayed behaviors can represent host responses to infection that benefit colony fitness. Though some enigmatic examples of behavioral manipulation have been reported, parasitism of ants and its effects on ant behavior and ecology are generally poorly understood. Here, we summarize some of the present-day literature on parasite-ant interactions. Our main focus is on interactions that change host behavior so drastically that infected ants play a seemingly different societal and, perhaps, ecological role. We highlight the parallels that can be found across parasite-ant symbioses that result in manipulated behaviors, such as summiting, phototaxis, substrate biting, and wandering. We also point out the many present knowledge gaps that could be filled by efforts ranging from novel parasite discovery, to more detailed behavioral observations and next-generation sequencing to start uncovering mechanisms. Key words: Parasites, ants, behavior, extended phenotype, manipulation, review. Received 17 June 2018; revision received 4 August 2018; accepted 10 August 2018 Subject Editor: Andrew V. Suarez Charissa de Bekker (contact author), Ian Will & Biplabendu Das, University of Central Florida, Department of Biology, Orlando, FL 32816, USA. E-mail: [email protected] Rachelle M.M. Adams, The Ohio State University, Department of Evolution, Ecology and Organismal Biology, Columbus, OH 43212, USA. Introduction Parasites exploit all free-living organisms and comprise drained further by reallocating energy to the display of the majority of species on Earth (Windsor 1998, Schmid- resistance behaviors (Rigby & al. 2002). Furthermore, Hempel 2011). Their biomass in ecosystems is substantial, parasites that modify the behavior of intermediate hosts, and they play important ecological roles in shaping com- to ascertain trophic transmission to ultimate host pred- munities (Kuris & al. 2008). One of the best investigated ators, drastically affect food webs (Lafferty & Morris social insects, Apis mellifera Linnaeus, 1758, has over 70 1996). In fact, parasites can alter the behavior of their host described macro- and micro-parasites (Schmid-Hempel to such an extent that they change its ecological function 1998). While this number is impressive, it is likely an un- as infected animals can react differently to abiotic stim- derestimate and not unique to A. mellifera. Other social in- uli compared to their conspecifics. They can also display sect hosts, with societies equal in complexity and size, have different activity levels, sounds, smells, distribution, and few or no reported parasite species. This may be attributed social roles (Moore 1995). to a lack of commercial interest and limited funding for While parasites are biomass rich, so are ants (Fittkau such investigations, instead of a true lack of parasites & Klinge 1973, Erwin 1989). Ants are among the most (Schmid-Hempel 2011). The high levels of biodiversity abundant animal groups and often comprise more than and biomass of parasites alter energy flux to other trophic 80% of the arthropods in tropical rain forests (Hölldo- levels and change community structure through modified bler & Wilson 1990, Davidson & Patrell-Kim 1996). competitive abilities. Behavior is central to enormous im- This success can be attributed to their complex social pacts on host growth rates as it influences factors such as organization and intriguing behavioral ecology. Ant spe- seed dispersal, prey capture, and soil excavation. Beyond cies display an array of unique behaviors that should be the consumptive effects of parasites, host energy can be studied at the individual, caste, and colony level, then © 2018 The Author(s). Open access, licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0 placed in the context of the species’ natural environment In recent years, manipulating parasites and their hosts (Sudd & Franks 1987). Parasites are key components has gained the interest of researchers and the general pub- of that environment as they influence ant behaviors by lic. New manipulative species interactions are being dis- providing pressures that select for adaptive host behav- covered (Steinkraus & al. 2017). Yet, there are many sig- ioral traits, such as parasite recognition, prevention, and nificant outstanding questions, even in systems that were defense (Lozano 1991, Agnew & al. 2000). In addition described decades ago (Badie & al. 1973, Loos-Frank & to displaying behaviors that protect individuals and the Zimmermann 1976, Romig & al. 1980). Next-generation colony against parasites, infected ants can also be viewed sequencing has made it possible to unveil gene expression as the parasites’ extended phenotype and display behav- and potential mechanisms underlying parasitically altered iors that benefit the parasite’s life cycle and transmission host behaviors (de Bekker & al. 2015, Malagocka & al. (Dawkins 1982). Such manipulated behaviors can be very 2015, Feldmeyer & al. 2016). Such efforts can reveal how apparent, such as the novel, fungus-induced substrate and when parasites influence host activity, especially in biting behavior observed in infected worker ants that are organisms that are as experimentally approachable as thought to be mainly of the foraging caste (Boer 2008, An- ants. We aim to create a broader interest in parasite-ant dersen & al. 2009). Modifications can also be subtler, as interactions by summarizing what is known and high- described for a cestode that reduces activity of infected lighting knowledge gaps waiting to be filled. We hope to individuals of the nursing caste and aggression displayed entice more myrmecologists and behaviorists to integrate by uninfected nestmates, to seemingly facilitate trophic the effect that parasites might have on the behavior and transmission towards the woodpecker host (Plateaux biology of their focal ant species. 1972, Scharf & al. 2012, Beros & al. 2015). The altered Parasites influencing ant behavior behavior of infected individuals, such as reduced or less effective foraging activity, could thus impact the fitness of Phenotypic changes in the host – as a result of parasite the colony as a whole. Parasites could also affect behavior pressures and infection – can be adaptive to that host and at the colony level, for instance, through changes in the aid its survival. Alternatively, parasites can manipulate chemical profiles of infected individuals, as reported for host physiology, morphology, life history, and behavior, certain ectoparasites (e.g., Csata & al. 2017). This makes to directly benefit their own survival (Poulin & Thomas the colony’s gestalt odor (i.e., the uniform odor of a col- 1999, Thomas & al. 2010). Adaptive manipulation of host ony) more heterogeneous and relaxes the margin of error behavior can range from slight changes in existing be- used by uninfected nestmates when assessing chemical haviors to the induction of completely novel ones (Poulin profiles to distinguish kin from non-kin. This could lead to 1994, Thomas & al. 2002). Ants are favorable parasite increased susceptibility to competing conspecifics, social targets because of their dominance in most ecosystems parasites and parasitoids that drain the colony’s resources and ubiquity among habitat types. Furthermore, because and reduce colony fitness. Alternatively, certain behavioral of their social tendencies (e.g., nest living, food sharing, responses to infection might represent mere side-effects brood care), ant societies can spread parasites among without clear functions. Deciphering where parasitic ma- colony members (Cremer & al. 2007, Hughes 2012, Kon- nipulation begins and host response ends is, thus, a com- rad & al. 2012, Beros & al. 2015). As such, parasite-in- plicated endeavor that requires thorough experimentation duced behavioral shifts in ants have been widely reported. to determine which of the interacting organisms, if at all, However, we suspect the records to be far from complete adaptively benefits from the altered behavior. (Schmid-Hempel 1998). We summarize and discuss some Behavioral changes are especially important to con- of the present-day literature on entomopathogenic vi- sider in ants because of their role as ecosystem engineers ruses, prokaryotes, fungi, protozoans, helminths, and (Folgarait 1998, Griffiths & al. 2018). Ants are re- insects, with our main focus on those that manipulate ant sponsible for a substantial part of the nutrient redistri- behavior. This reveals that information on ant-infecting bution performed by animals in the rainforest. Moreo- viruses, prokaryotes, and protozoans is largely lacking. ver, their removal of food resources is not compensated More in-depth research on fungi, helminths and para- by other invertebrates and vertebrates when ants are sitizing insects is actively underway. Moreover, this review removed from a habitat. This makes them key players demonstrates the parallels between observed manipulated in maintaining rainforest ecosystem processes
Recommended publications
  • Rediscovery and Reclassification of the Dipteran Taxon Nothomicrodon
    www.nature.com/scientificreports OPEN Rediscovery and reclassification of the dipteran taxon Nothomicrodon Wheeler, an exclusive Received: 07 November 2016 Accepted: 28 February 2017 endoparasitoid of gyne ant larvae Published: 31 March 2017 Gabriela Pérez-Lachaud1, Benoit J. B. Jahyny2,3, Gunilla Ståhls4, Graham Rotheray5, Jacques H. C. Delabie6 & Jean-Paul Lachaud1,7 The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts. Ants are hosts to at least 17 orders of myrmecophilous arthropods (organisms dependent on ants), ranging from general scavengers to highly selective predators and parasitoids that attack either ants, their brood or other myr- mecophiles1–3.
    [Show full text]
  • 106Th Annual Meeting of the German Zoological Society Abstracts
    September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416
    [Show full text]
  • Newly Discovered Sister Lineage Sheds Light on Early Ant Evolution
    Newly discovered sister lineage sheds light on early ant evolution Christian Rabeling†‡§, Jeremy M. Brown†¶, and Manfred Verhaagh‡ †Section of Integrative Biology, and ¶Center for Computational Biology and Bioinformatics, University of Texas, 1 University Station C0930, Austin, TX 78712; and ‡Staatliches Museum fu¨r Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany Edited by Bert Ho¨lldobler, Arizona State University, Tempe, AZ, and approved August 4, 2008 (received for review June 27, 2008) Ants are the world’s most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have trou- bled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morpho- logical and phylogenetic evidence we suggest that these special- EVOLUTION ized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environ- ments like tropical soils over great spans of time.
    [Show full text]
  • The Maryland Entomologist
    THE MARYLAND ENTOMOLOGIST Insect and related-arthropod studies in the Mid-Atlantic region Volume 7, Number 2 September 2018 September 2018 The Maryland Entomologist Volume 7, Number 2 MARYLAND ENTOMOLOGICAL SOCIETY www.mdentsoc.org Executive Committee: President Frederick Paras Vice President Philip J. Kean Secretary Janet A. Lydon Treasurer Edgar A. Cohen, Jr. Historian (vacant) Journal Editor Eugene J. Scarpulla E-newsletter Editors Aditi Dubey The Maryland Entomological Society (MES) was founded in November 1971, to promote the science of entomology in all its sub-disciplines; to provide a common meeting venue for professional and amateur entomologists residing in Maryland, the District of Columbia, and nearby areas; to issue a periodical and other publications dealing with entomology; and to facilitate the exchange of ideas and information through its meetings and publications. The MES was incorporated in April 1982 and is a 501(c)(3) non-profit, scientific organization. The MES logo features an illustration of Euphydryas phaëton (Drury) (Lepidoptera: Nymphalidae), the Baltimore Checkerspot, with its generic name above and its specific epithet below (both in capital letters), all on a pale green field; all these are within a yellow ring double-bordered by red, bearing the message “● Maryland Entomological Society ● 1971 ●”. All of this is positioned above the Shield of the State of Maryland. In 1973, the Baltimore Checkerspot was named the official insect of the State of Maryland through the efforts of many MES members. Membership in the MES is open to all persons interested in the study of entomology. All members receive the annual journal, The Maryland Entomologist, and the monthly e-newsletter, Phaëton.
    [Show full text]
  • Sociobiology 63(4): 1015-1021 (December, 2016) DOI: 10.13102/Sociobiology.V63i4.1077
    Sociobiology 63(4): 1015-1021 (December, 2016) DOI: 10.13102/sociobiology.v63i4.1077 Sociobiology An international journal on social insects Research article - Ants Phorid Flies Parasitizing Leaf-Cutting Ants: Their Occurrence, Parasitism Rates, Biology and the First Account of Multiparasitism MAL Bragança1, FV Arruda2, LRR Souza1, HC Martins1, TMC Della Lucia3 1 - Universidade Federal do Tocantins, Porto Nacional-TO, Brazil 2 - Universidade Estadual de Goiás, Anápolis-GO, Brazil 3 - Universidade Federal de Viçosa, Viçosa-MG, Brazil Article History Abstract The leaf-cutting ants Atta sexdens (Linnaeus) and Atta laevigata (Smith) Edited by were parasitized by the following phorid flies: Apocephalus attophilus Gilberto M. M. Santos, UEFS, Brazil Received 25 May 2016 Borgmeier, Apocephalus vicosae Disney, Myrmosicarius grandicornis Initial acceptance 24 August 2016 Borgmeier and species of Eibesfeldtphora Disney. The area of occurrence Final acceptance 07 October 2016 of phorids parasitizing A. sexdens was extended to include Central Publication date 13 January 2017 Brazil. The rate of parasitism on A. sexdens was three times lower than the rate found on A. laevigata; the most common flies were, Keywords respectively, M. grandicornis in A. sexdens and A. attophilus in A. Savannah, host-parasite association, natural enemies, Phoridae, Atta sexdens, laevigata. This last phorid showed the shortest life span but the higher Atta laevigata. percentage of emergence. Multiparasitism on workers of A. sexdens and of A. laevigata involving three combinations of four phorid species Corresponding author was rare and is here related for the first time for leaf-cutting ants. Marcos Antonio Lima Bragança Universidade Federal do Tocantins, Curso de Ciências Biológicas, 77500-000, Porto Nacional-TO, Brasil E-Mail: [email protected] Introduction Disney.
    [Show full text]
  • (Diptera: Phoridae) Associated with Leaf-Cutter Ants and Army Ants (Hymenoptera: Formicidae) in Argentina by R
    95 New Species and Records of Scuttle Flies (Diptera: Phoridae) Associated with Leaf-cutter Ants and Army Ants (Hymenoptera: Formicidae) in Argentina by R. Henry L. Disney1, Luciana Elizalde2 & Patricia J. Folgarait2 ABSTRACT Lucianaphora folgaraitae Disney n. gen., n. sp., Macrocerides attophilus n. sp. are described, both being collected over leaf-cutter ants and Cremersia crassicostalis n. sp. from females collected over army ants. Some species col- lected with army ants are given code letters until they are linked up with their unknown sex. Host records for previously known species were all from colonies of army ants, whose myrmecophiles are better documented than those recorded from the colonies of leaf-cutter ants. Key Words: Phoridae, Argentina, Leaf-cutter ants, Army ants INTRODUCTION The numerous myrmecophile and parasitoidscuttle flies (Phoridae) associ- ated with army ants (Ecitoninae) have been reviewed by Disney & Kistner (2003), recently augmented by Disney & Rettenmeyer (2007) and Disney & Berghoff (2007). The far fewer records of those associated with leaf-cutter ants (Myrmicinae) were last reviewed by Disney (1994), but since then knowledge of the parasitoid species has increased for phorids of the genera Apocephalus, Neodohrniphora, and Myrmosicarius (Braganca et al. 1998, 2002; Brown 1997, 2001, Disney 1996, Disney et al. 2006, Feener & Brown 1993; Feener & Moss 1990, Tonhasca 1996, Tonhasca et al. 2001). During a study of the parasitoid genus Myrmosicarius Borgmeier (Diptera: Phoridae), whose preferred hosts are leaf-cutter ants (Disney et al. 2006), other mymecophilous and parasitoid species of scuttle fly were also observed and collected from colonies of the same ants. In addition, some phorids 1 Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, ENGLAND Email: [email protected] 2 Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, R.S.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Behavioral Strategies of Phorid Parasitoids and Responses of Their Hosts, the Leaf-Cutting Ants
    Journal of Insect Science: Vol. 12 | Article 135 Elizalde and Folgarait Behavioral strategies of phorid parasitoids and responses of their hosts, the leaf-cutting ants Luciana Elizalde1,2a*, Patricia Julia Folgarait1b 1Laboratorio de Hormigas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina 2Laboratorio Ecotono, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina Downloaded from Abstract Host-searching and oviposition behaviors of parasitoids, and defensive responses of the hosts, are fundamental in shaping the ecology of host-parasitoid interactions. In order to uncover key behavioral features for the little known interactions between phorid parasitoids (Diptera: http://jinsectscience.oxfordjournals.org/ Phoridae) and their leaf-cutting ant hosts (Formicidae: Attini), host-related behavioral strategies (i.e., host searching and oviposition) for 13 phorid species, and host defensive responses (i.e., hitchhikers and particular body postures) for 11 ant species, were studied. Data was collected at 14 localities, one of them characterized by its high species richness for this host-parasitoid system. Phorid species showed both great variation and specificity in attacking behaviors. Some chose their hosts using either an ambush or an actively searching strategy, while some species attacked ants on different body parts, and specialized on ants performing different tasks, such as when ants were foraging, removing wastes to refuse piles, or repairing the nest. Combining all by guest on June 6, 2016 the behaviors recorded, most phorid species differed in performance in at least one, making it possible to recognize species in the field through their behavior. Phorid species that attacked hosts with greater activity levels showed overall higher attack rates, although there was no significant correlation between attack rates by most phorid species and ant activity outside the nest while parasitoids were attacking.
    [Show full text]
  • Download PDF File
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 30: 27-52 doi: 10.25849/myrmecol.news_030:027 16 January 2020 Original Article Unveiling the morphology of the Oriental rare monotypic ant genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera: Formicidae: Leptanillinae) and its evolutionary implications, with first descriptions of the male, larva, tentorium, and sting apparatus Aiki Yamada, Dai D. Nguyen, & Katsuyuki Eguchi Abstract The monotypic genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera, Formicidae, Leptanillinae) is an ex- tremely rare relictual lineage of apparently subterranean ants, so far known only from a few specimens of the worker and queen from Ha Tinh in Vietnam and Hainan in China. The phylogenetic position of the genus had been uncertain until recent molecular phylogenetic studies strongly supported the genus to be the most basal lineage in the cryptic subterranean subfamily Leptanillinae. In the present study, we examine the morphology of the worker, queen, male, and larva of the only species in the genus, Opamyrma hungvuong Yamane, Bui & Eguchi, 2008, based on colonies newly collected from Guangxi in China and Son La in Vietnam, and provide descriptions and illustrations of the male, larva, and some body parts of the worker and queen (including mouthparts, tentorium, and sting apparatus) for the first time. The novel morphological data, particularly from the male, larva, and sting apparatus, support the current phylogenetic position of the genus as the most basal leptanilline lineage. Moreover, we suggest that the loss of lancet valves in the fully functional sting apparatus with accompanying shift of the venom ejecting mechanism may be a non-homoplastic synapomorphy for the Leptanillinae within the Formicidae.
    [Show full text]
  • Swarth, C. Et Al. the 2007 Jug Bay Bioblitz Reliort. 2008
    2007 Jug Bay BioBlitz Report Christopher Swarth, Lindsay Hollister, Elaine Friebele, Karyn Molines and Susan Matthews Jug Bay Wetlands Sanctuary December 2008 Introduction A BioBlitz is a 24-hour field survey and inventory of organisms in a well-defined area such as a park or other natural area. The objective of this intensive survey is to generate a catalog or list of all species that are identified or collected during the brief survey period. The first BioBlitz in the United States was conducted in 1996 in Washington, DC. Today dozens of BioBlitzes are held annually in the United States (see Wikipedia Encyclopedia; http://en.wikipedia.org/wiki/BioBlitz. A BioBlitz increases local knowledge of biodiversity and involves local naturalists and the public in coordinated fieldwork and observation. The surveys raise the awareness among the general public about the natural world and the importance of biodiversity. The species distribution and occurrence information that is obtained from a BioBlitz also provides resource managers with a deeper understanding of the natural lands under their management, thus enabling improved habitat stewardship. The 2007 Jug Bay BioBlitz took place at the Jug Bay Wetlands Sanctuary over a 24-hour period, from 12:00 (noon) on 15 September to 12:00 on 16 September. We organized this event in order to take advantage of the growing interest in biodiversity by the public and to tap in to the community of active, highly skilled naturalists in the Washington DC/Baltimore area. For this first-time effort we concentrated the field surveys on groups of organisms for which local biogeographical information was poor or incomplete (for example, ants, ground bees, spiders and zooplankton), rather than on the groups for which our knowledge on distribution was relatively thorough such as birds and herps.
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • 94: Frank & Mccoy Intro. 1 INTRODUCTION to INSECT
    Behavioral Ecology Symposium ’94: Frank & McCoy Intro. 1 INTRODUCTION TO INSECT BEHAVIORAL ECOLOGY : THE GOOD, THE BAD, AND THE BEAUTIFUL: NON-INDIGENOUS SPECIES IN FLORIDA INVASIVE ADVENTIVE INSECTS AND OTHER ORGANISMS IN FLORIDA. J. H. FRANK1 AND E. D. MCCOY2 1Entomology & Nematology Department, University of Florida, Gainesville, FL 32611-0620 2Biology Department and Center for Urban Ecology, University of South Florida, Tampa, FL 33620-5150 ABSTRACT An excessive proportion of adventive (= “non-indigenous”) species in a community has been called “biological pollution.” Proportions of adventive species of fishes, am- phibia, reptiles, birds and mammals in southern Florida range from 16% to more than 42%. In Florida as a whole, the proportion of adventive plants is about 26%, but of in- sects is only about 8%. Almost all of the vertebrates were introduced as captive pets, but escaped or were released into the wild, and established breeding populations; few arrived as immigrants (= “of their own volition”). Almost all of the plants also were in- troduced, a few arrived as immigrants (as contaminants of shipments of seeds or other cargoes). In contrast, only 42 insect species (0.3%) were introduced (all for bio- logical control of pests, including weeds). The remainder (about 946 species, or 7.6%) arrived as undocumented immigrants, some of them as fly-ins, but many as contami- nants of cargoes. Most of the major insect pests of agriculture, horticulture, human- made structures, and the environment, arrived as hitchhikers (contaminants of, and stowaways in, cargoes, especially cargoes of plants). No adventive insect species caus- ing problems in Florida was introduced (deliberately) as far as is known.
    [Show full text]