Cloudinid - Wikipedia, the Free Encyclopedia Page 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications Andrew J
A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications Andrew J. Miller Departments of Earth and Planetary Sciences and of History Harvard University, Cambridge, MA 02138 [email protected] Abstract The conventional view of the Ediacaran index fossil Cloudina, as proposed by Grant (1990), depicts the shell structure as a series of nested test tubes. A digital serial-reconstruction of Cloudina and examination of thin sections indicates that only the bottom-most tube has a bottom and that the shell wall structure is not as well defined as previously thought. The conventional ecological reconstruction, as proposed by Seilacher (1999), puts Cloudina in a microbial mat framework. Evidence from fossils in situ and from the shape of Cloudina suggests that this interpretation is incorrect. Rather, I propose that Cloudina lived on seaweeds in the reef environment. I also introduce a new mode of inference in determining shell orientation based on gravitational forces. Given the morphological evidence, Cloudina appears to be more similar to pogonophoran or annelid worms and less similar than previously thought to cnidarian corals. Introduction Life in the Precambrian is seen by many in a Hobbesian view—sessile, benthic, and short. While this may accurately describe the functional behavior of Ediacaran communities, it overlooks the significant metazoan diversity that was present there, for within the Ediacaran period the first metazoans entered the fossil record and diversified. Even though the presence of metazoans in the Ediacaran has been known for over thirty years, relatively little is known about their phylogenic affinities, their structure, and their role in the ecosystem. -
The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. -
Multiscale Approach Reveals That Cloudina Aggregates Are Detritus
Multiscale approach reveals that Cloudina aggregates PNAS PLUS are detritus and not in situ reef constructions Akshay Mehraa,1 and Adam Maloofa aDepartment of Geosciences, Princeton University, Princeton, NJ 08544 Edited by Donald E. Canfield, Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense M., Denmark, and approved January 19, 2018 (received for review November 14, 2017) The earliest metazoans capable of biomineralization appeared precluding physical separation or the use of traditional computed during the late Ediacaran Period (635–541 Ma) in strata associ- tomography (CT) techniques. The inability to produce in situ ated with shallow water microbial reefs. It has been suggested 3D reconstructions has led researchers to make measurements that some Ediacaran microbial reefs were dominated (and possi- of Cloudina individuals and aggregates on polished slabs, thin bly built) by an abundant and globally distributed tubular organ- sections, and bedding planes (3, 4, 7). Unfortunately, as noted ism known as Cloudina. If true, this interpretation implies that by previous researchers, 3D spatial and size distributions can- metazoan framework reef building—a complex behavior that is not be estimated from 2D cross-sections (12). Furthermore, syn- responsible for some of the largest bioconstructions and most thetic experiments reveal that, in the case of tubular structures diverse environments in modern oceans—emerged much earlier such as Cloudina, it is not possible to correctly infer orienta- than previously thought. Here, we present 3D reconstructions of tion from 2D cross-sections (Fig. 1 A–C), and diameter measure- Cloudina populations, produced using an automated serial grind- ments made on cross-sections through curved and/or elliptical ing and imaging system coupled with a recently developed neural tubes are subject to a large degree of error (as great as 35%; Fig. -
Review of the Mineralogy of Calcifying Sponges
Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean. -
Lee-Riding-2018.Pdf
Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian. -
Did Anoxia Terminate Ediacaran Benthic Communities? Evidence from Early T Diagenesis ⁎ Rachel Wooda, , Frederick Bowyera, Amelia Pennya, Simon W
Precambrian Research 313 (2018) 134–147 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Did anoxia terminate Ediacaran benthic communities? Evidence from early T diagenesis ⁎ Rachel Wooda, , Frederick Bowyera, Amelia Pennya, Simon W. Poultonb a School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK b School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ARTICLE INFO ABSTRACT Keywords: The Ediacaran oceanic redox landscape was heterogeneous, where many basins had a shallow and highly dy- Ediacaran namic chemocline above anoxic (ferruginous or euxinic) or low oxygen (manganous) waters. Seawater mMg/Ca Redox ratio was also high, promoting early diagenetic dolomitisation. How the benthos responded to these conditions is Reefs fundamental to understanding their ecological dynamics. Here we utilise redox sensitive elements in early Early marine cements marine carbonate cements to investigate possible water column redox controls on the distribution and growth of Dolomite the oldest metazoan communities. Skeletal communities in the Zaris Sub-Basin of the Nama Group, Namibia (∼550–547 Ma), grew in shallow waters where fine-grained carbonate sediment often shows evidence of early dolomitisation. Mid-ramp Cloudina reefs are composed of open, highly porous structures that formed multiple, successive assemblages. Each as- semblage is terminated by thin (< 1 mm), layers of dolomicrite sediment and dolomite cement. All dolomitic lithologies in the Nama Group analysed via Fe speciation suggest precipitation under anoxic ferruginous water column conditions. Reef cements show a paragenetic sequence from synsedimentary to early marine cement and final burial, which we infer were precipitated under dynamic redox conditions. -
Biomineralization and Evolutionary History Andrew H
1 111 Biomineralization and Evolutionary History Andrew H. Knoll Department of Organismic and Evolutionary Biology Harvard University Cambridge, Massachusetts, 02138 U.S.A. INTRODUCTION The Dutch ethologist Niko Tinbergen famously distinguished between proximal and ultimate explanations in biology. Proximally, biologists seek a mechanistic understanding of how organisms function; most of this volume addresses the molecular and physiological bases of biomineralization. But while much of biology might be viewed as a particularly interesting form of chemistry, it is more than that. Biology is chemistry with a history, requiring that proximal explanations be grounded in ultimate, or evolutionary, understanding. The physiological pathways by which organisms precipitate skeletal minerals and the forms and functions of the skeletons they fashion have been shaped by natural selection through geologic time, and all have constrained continuing evolution in skeleton-forming clades. In this chapter, I outline some major patterns of skeletal evolution inferred from phylogeny and fossils (Figure 1), highlighting ways that our improving mechanistic knowledge of biomineralization can help us to understand this evolutionary record (see Leadbetter and Riding 1986; Lowenstam and Weiner 1989; Carter 1990; and Simkiss and Wilbur 1989 for earlier reviews). Figure 1. A geologic time scale for the past 1000 million years, showing the principal time divisions used in Earth science and the timing of major evolutionary events discussed in this chapter. Earlier intervals of time—the Mesoproterozoic (1600–1000 million years ago) and Paleoproterozoic (2500– 1600 million years ago) eras of the Proterozoic Eon and the Archean Eon (> 2500 million years ago)— are not shown. Time scale after Remane (2000). -
Review and Prospect on the Botryoidal Structures from the Sinian Dengying Formation, Sichuan Basin, China
Petroleum xxx (2017) 1e7 Contents lists available at ScienceDirect Petroleum journal homepage: www.keaipublishing.com/en/journals/petlm Review and prospect on the botryoidal structures from the Sinian Dengying Formation, Sichuan Basin, China * Chengbo Lian a, b, , Guanxiong Ren a, Fang Qu a, Xiucheng Tan a, b, Ling Li a, Wei Zeng a, Guang Hu a, Hong Liu a a School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, Sichuan, China b Department of Sedimentology and Hydrocarbon Accumulation, PetroChina Key Laboratory of Carbonate Reservoir, Southwest Petroleum University, Chengdu, 610500, Sichuan, China article info abstract Article history: Fabric of carbonate rock is the important foundation and one of main research contents for study on Received 15 March 2016 carbonate sedimentology, and has always been the attention of the academic circles. Botryoidal Received in revised form structures from the Sinian Dengying Formation in the Sichuan Basin is a kind of special carbonate 10 October 2016 fabric, the fabric is named after the shape of a grape. In this paper, from four aspects of the research Accepted 2 December 2016 status, the definition of the botryoidal structures and the related terms, the construction charac- teristics of the botryoidal structures, the component of the botryoidal structures, geochemical Keywords: characteristics and the genesis of the botryoidal structures are reviewed. It points out the current Botryoidal structures Construction research issues of botryoidal structures from the Sinian Dengying Formation in the Sichuan Basin, Lamina and put forward that future research should focus on the accurate analysis of its internal con- Genesis struction, precipitation mechanism of the major components, and the construction mechanism of botryoidal structures. -
Accepted Manuscript
Accepted Manuscript Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China Shengfei Qin, Feng Li, Zheng Zhou, Guoxiao Zhou PII: S0264-8172(17)30172-1 DOI: 10.1016/j.marpetgeo.2017.05.013 Reference: JMPG 2905 To appear in: Marine and Petroleum Geology Received Date: 31 August 2016 Revised Date: 4 May 2017 Accepted Date: 4 May 2017 Please cite this article as: Qin, S., Li, F., Zhou, Z., Zhou, G., Geochemical characteristics of water- dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China, Marine and Petroleum Geology (2017), doi: 10.1016/j.marpetgeo.2017.05.013. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geochemical characteristics of water-dissolved gases and implications on gas origin of Sinian to Cambrian reservoirs of Anyue gas field in Sichuan Basin, China Shengfei Qin a,* , Feng Li b, Zheng Zhou c, Guoxiao Zhou a a Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, No.20 Xueyuan Road, P. O. Box 910, Beijing, 100083 P. R. China ([email protected] ) b Science and Technology Management Department of PetroChina, No.9 Dongzhimen North Street ,Beijing, 100007, P. -
New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3. -
The Fossil Record of the Cambrian “Explosion”: Resolving the Tree of Life Critics As Posing Challenges to Evolution
Article The Fossil Record of the Cambrian “Explosion”: 1 Resolving the Tree of Life Keith B. Miller Keith B. Miller The Cambrian “explosion” has been the focus of extensive scientifi c study, discussion, and debate for decades. It has also received considerable attention by evolution critics as posing challenges to evolution. In the last number of years, fossil discoveries from around the world, and particularly in China, have enabled the reconstruction of many of the deep branches within the invertebrate animal tree of life. Fossils representing “sister groups” and “stem groups” for living phyla have been recognized within the latest Precambrian (Neoproterozoic) and Cambrian. Important transitional steps between living phyla and their common ancestors are preserved. These include the rise of mollusks from their common ancestor with the annelids, the evolution of arthropods from lobopods and priapulid worms, the likely evolution of brachiopods from tommotiids, and the rise of chordates and echinoderms from early deuterostomes. With continued new discoveries, the early evolutionary record of the animal phyla is becoming ever better resolved. The tree of life as a model for the diversifi cation of life over time remains robust, and strongly supported by the Neoproterozoic and Cambrian fossil record. he most fundamental claim of bio- (such as snails, crabs, or sea urchins) as it logical evolution is that all living does to the fi rst appearance and diversi- T organisms represent the outer tips fi cation of dinosaurs, birds, or mammals. of a diversifying, upward- branching tree This early diversifi cation of invertebrates of life. The “Tree of Life” is an extreme- apparently occurred around the time of ly powerful metaphor that captures the the Precambrian/Cambrian boundary over essence of evolution. -
Decoding the Fossil Record of Early Lophophorates
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284 Decoding the fossil record of early lophophorates Systematics and phylogeny of problematic Cambrian Lophotrochozoa AODHÁN D. BUTLER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9327-1 UPPSALA urn:nbn:se:uu:diva-261907 2015 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, Uppsala, Friday, 23 October 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Maggie Cusack (School of Geographical and Earth Sciences, University of Glasgow). Abstract Butler, A. D. 2015. Decoding the fossil record of early lophophorates. Systematics and phylogeny of problematic Cambrian Lophotrochozoa. (De tidigaste fossila lofoforaterna. Problematiska kambriska lofotrochozoers systematik och fylogeni). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9327-1. The evolutionary origins of animal phyla are intimately linked with the Cambrian explosion, a period of radical ecological and evolutionary innovation that begins approximately 540 Mya and continues for some 20 million years, during which most major animal groups appear. Lophotrochozoa, a major group of protostome animals that includes molluscs, annelids and brachiopods, represent a significant component of the oldest known fossil records of biomineralised animals, as disclosed by the enigmatic ‘small shelly fossil’ faunas of the early Cambrian. Determining the affinities of these scleritome taxa is highly informative for examining Cambrian evolutionary patterns, since many are supposed stem- group Lophotrochozoa. The main focus of this thesis pertained to the stem-group of the Brachiopoda, a highly diverse and important clade of suspension feeding animals in the Palaeozoic era, which are still extant but with only with a fraction of past diversity.