Solve the Worst

Total Page:16

File Type:pdf, Size:1020Kb

Solve the Worst Solve the Worst Palm Problems Identify and treat problems alms are an important of the leaf, progressing along one side of the | component of the land- leaf to its tip and back down the other side in palms before they become scape in areas having to its base. Once the majority of leaves in serious because the cost of mild climates. They im- the canopy have died, the remaining green part a distinctly tropical leaves will wilt and the bud will die. Unfor- producing and installing large look that few other plants can provide. tunately, there are no effective chemical specimen palms can be high Unfortunately, because most palms have controls for this disease and reducing the only a single terminal bud or rate of spread to healthy growing point, diseases or palms is the best strategy. By TIMOTHY K. physiological disorders that Fusarium oxysporum f. BROSCHAT, Ph.D. might merely weaken sp. canariensis can sur- broadleaf trees are often fatal vive for years in the soil in palms. and can readily infect new replacement palms. 1) Fusarium Wilt Similarly, transplanted One of the most serious field-grown palms from diseases of Canary Island date infested fields can spread palms in California, and more this disease. However, recently Florida, is Fusarium the primary means of wilt. It is characterized by spread is via contami- death of the leaflets on one nated pruning tools. side of an older leaf or the Infected palms should leaves on just one side of the only be trimmed once crown. Symptoms typically per year to minimize begin on leaflets near the base spread, and all tools used should be disinfected be- • 1) Fusarium wilt of Canary Island date palm. fore moving on to the next palm. Research at the University of (Roystonea spp.), sabal palms (Sabal spp.), spores capable of infecting dead palm Florida has shown that soaking tools for 10 queen palm (Syagrus romanzoffiana), and wood or healthy palms some distance from minutes in 25% chlorine bleach, 50% iso- Washington palms (Washingtonia spp.). the point of release. Although mechanical propyl or denatured alcohol, or 25% Pine- wounding of palm trunks increases the Sol disinfectant are all effective in eliminat- 3) Ganoderma Butt Rot likelihood of infection, wounding is not ing this fungus from pruning equipment. Ganoderma butt rot is probably the necessary for infection to occur. When pruning, avoid cutting into green most devastating palm disease in the south- Ganoderma zonatum, the causal organ- leaf bases. eastern United States. Its range corre- ism, can also spread through the soil, living sponds roughly with that of the sabal palm on dead palm roots and wood. One of the 2) Lethal Yellowing [Sabal palmetto) and extends from South most common means by which Gano- Lethal yellowing (LY) is one of the Carolina to Florida. Although this disease derma infects clumping palms is when ma- most serious diseases of palms in Florida, has only been documented on about 40 or ture canes of these palms are removed. The but it also occurs in the Brownsville, Texas 50 species, it is believed that all palm resulting dead stump is quickly invaded by area, and parts of Mexico, Central America species are probably susceptible. Ganoderma spores. Once established on and the Caribbean. This the stump, this disease invades and kills microbe is spread only M 2) Lethal yellowing of healthy living canes until the palm is killed. by phloem-feeding in- coconut palm. Any palm tissue infected with Gano- sects such as the derma should be hauled to a landfill or in- leafhopper, Myndus cinerated, but never chipped for mulch, as crudus. Approximately • 3) Ganoderma butt rot this has been shown to transmit the disease 30 species of palms are on sabal palm. susceptible to LY. Symptoms of LY in most coconut palms may begin with mid-canopy or older yellow leaves that drop down against the trunk, but in some species such as Christmas palm these collapsing older leaves may not show any yellowing. In Malayan Dwarf coconut palms, leaves appear wilted, with little or no yellowing evident. Ganoderma butt rot is primarily a dis- to healthy palms. Stumps remaining after Blackening of the flowers and premature ease of mature palms in the landscape. palm removal should be dug out. Also, any fruit drop are also characteristic symptoms Symptoms appear as wilting and death of new conks should be prompdy and regu- of LY in coconut palms. the oldest leaves, but it gradually pro- larly removed to prevent the production of Lethal yellowing is best prevented by gresses up through the canopy until the additional spores. planting palms resistant to the disease, but bud is killed. Unfortunately, there is no it can be prevented in susceptible species chemical control for this fungus and fumi- 4) Potassium Deficiency by trunk injection with oxytetracycline. If gation of Ganoderma-infected stumps or Potassium deficiency is probably the the disease is diagnosed at a very early root systems is not effective in eliminating most widespread and serious nutrient defi- stage, antibiotic injection results in recovery this fungus. ciency of palms throughout the world. for about half of the treated palms. Com- One of the earliest and most diagnostic Palms have rather high requirements for mon palms known to be resistant to LY in- symptoms for this disease is the presence potassium and since they often grow in clude paurotis palm [Acoelorrhaphe of the fungal fruiting structure (conk) on highly leached, sandy or nutrient-poor wrightii), pindo palm [Butia capitata), Euro- the lower portion of the trunk. These soils, this element is deficient to some de- pean fan palm (Chamaerops humilis), areca conks start out as small white lumps but gree in virtually all palms in the landscape. palm (Dypsis lutescens), thatch palms (Coc- quickly mature into brown woody brackets Deficiency symptoms vary among palm cothnnax and Thrinax spp.), royal palms up to 1 foot across, releasing millions of species, but usually begin with small translucent yellow to orange or necrotic results in potassium being removed from spotting on the oldest leaves, readily visible progressively younger leaves that were pre- Injecting Palms if the leaf is held up to the light. As symp- viously symptom-free. If this practice con- toms progress, these older leaves may take tinues, the palm will quickly run out of old Made Easy on a yellow-orange to bronze color that is leaves from which to remove potassium for For many years, arborists have faced visible from some distance. One of the key new growth and the palm then enters a numerous palm tree problems: nutri- symptoms on most species is the presence state of rapid decline. At this point, the tional deficiencies, borers and lethal of necrosis along the margins of the leaflets trunk diameter tapers to a point, all new palm yellows, to name a few. Recently, of older leaves. As this becomes more se- leaves emerge stunted, chlorotic and friz- many professionals have turned to vere, entire leaflet tips become withered or zled and death of the bud soon follows. chemotheraputant treatments. Many in frizzled in appearance, yet upon close ex- This late stage of deficiency is extremely the industry are using one of the many amination, the midrib of the leaf will re- similar in appearance to manganese defi- microinjection technologies that are main alive, though perhaps discolored. The ciency and only close examination of the available. gray frizzled old leaves typically found on symptoms of an individual leaf will reveal One problem in treatment exists, royal palms (Roystonea spp.) and the which problem is present. however, and this stems from the differ- golden-orange foliage of areca palms [Dyp~ In addition to poor soils, one of the pri- ence between the anatomy of palms and sis lutescens) are common examples of mary causes of potassium deficiency in all other trees. Palm trees are mono- potassium deficiency. palms is the use of fertilizers having high cotyledons. This fact makes them more Potassium is considered a "mobile" ele- nitrogen content in controlled release closely related to grasses than to other ment within plants. Under conditions of form, but low to moderate levels of potas- types of trees. deficiency, potassium will be removed sium in soluble form. This combination The configuration of the vascular tis- from older leaves and retranslocated up to forces rapid palm growth, yet provides in- sue is unlike that of any other type of sufficient potassium to tree. Instead of a ring of conductive tis- do so. Thus, the use of sue under the bark, the vascular tissues turf fertilizers in the of palms are made up of tight groups of vicinity of palm roots is conductive cells known as bundles. These a major cause of defi- bundles contain both xylem and phloem ciency in palms. tissue and are connected radially to Treat severe defi- other bundles by live and woody, non- ciency by broadcasting cambial structures. Because of this vascu- sulfur-coated potassium lar tissue orientation, palm trees translo- sulfate under the cate fairly evenly throughout their entire canopy at a rate of 1.5 cross-section at any given point up or lbs. per 100 sq. ft, every down the trunk. three months for a year When you need to microinject a palm, or more. To prevent a you must take into account: • height of the palm tree when calcu- A 4) Moderately severe potassium deficiency K-Mg imbalance from occurring under lating the dose of the chemotheraputant; on areca palm showing frizzling of leaflet tips. these circumstances, it is also necessary to apply a 100% coated palm maintenance • diameter of the microinjection holes fertilizer at the same rate and frequency to be as small as possible; newly expanding leaves where it will be in- starting six weeks after the first potassium • microinjection feeder tube to be corporated.
Recommended publications
  • Cultural Characterization and Chlamydospore Function of the Ganodermataceae Present in the Eastern United States
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith To cite this article: Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith (2019): Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States, Mycologia To link to this article: https://doi.org/10.1080/00275514.2018.1543509 View supplementary material Published online: 24 Jan 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2018.1543509 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd a, Eric R. Lindera, Matthew E. Smith b, Robert A. Blanchettec, and Jason A. Smitha aSchool of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611; bDepartment of Plant Pathology, University of Florida, Gainesville, Florida 32611; cDepartment of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 ABSTRACT ARTICLE HISTORY The cultural characteristics of fungi can provide useful information for studying the biology and Received 7 Feburary 2018 ecology of a group of closely related species, but these features are often overlooked in the order Accepted 30 October 2018 Polyporales. Optimal temperature and growth rate data can also be of utility for strain selection of KEYWORDS cultivated fungi such as reishi (i.e., laccate Ganoderma species) and potential novel management Chlamydospores; tactics (e.g., solarization) for butt rot diseases caused by Ganoderma species.
    [Show full text]
  • A RAPID and EFFICIENT DNA EXTRACTION PROTOCOL for Ganoderma Zonatum, a BASAL and UPPER STEM ROT PATHOGEN of OIL PALM in MALAYSIA
    RESEARCH ARTICLES Journal of Oil Palm Research Vol. 33 (1) March 2021 p. 12-20 DOI: https://doi.org/10.21894/jopr.2020.0058 A RAPID AND EFFICIENT DNA EXTRACTION PROTOCOL FOR Ganoderma zonatum, A BASAL AND UPPER STEM ROT PATHOGEN OF OIL PALM IN MALAYSIA JAYANTHI NAGAPPAN*; FAIZUN KADRI*; CHIN CHIEW FOAN**; RICHARD M COOPER‡; SEAN T MAY‡‡; IDRIS ABU SEMAN* and ENG TI LESLIE LOW* ABSTRACT Ganoderma zonatum is associated with both the basal and upper stem rot diseases in oil palm. Despite the severity of these diseases, there is only limited information on the molecular characteristics of this oil palm pathogen. Most of the studies on G. zonatum related to oil palm are focused on the epidemiology and genetic diversity of the organism. In other palm species, G. zonatum has also been identifed as the causal agent of bud rot disease. To further characterise the organism using molecular techniques, the ability to isolate good quality DNA samples is important. In this study, seven DNA extraction protocols were evaluated and the best protocol, Boehm protocol, had the highest yield of good quality DNA. The protocol was able to yield 208.95 ± 4.52 µg DNA per gram of sample with purities above 1.80 for A260/280 and 2.0 for A260/230. This extraction protocol is a rapid and efcient protocol that employs cetyl trimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS), β-mercaptoethanol and proteinase K in the lysis bufer. The Boehm protocol was further tested on three other Ganoderma species found in the oil palm plantations and a medicinal fungus, G.
    [Show full text]
  • Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma Lucidum Species Complex Article
    Mycosphere 6 (5): 542–559(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/5/4 Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma lucidum Species Complex Hapuarachchi KK 1, 2, 3, Wen TC1, Deng CY5, Kang JC1 and Hyde KD2, 3, 4 1The Engineering and Research Center of Southwest Bio–Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China 2Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3Center of Excellence in Fungal Research, and 4School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 5Guizhou Academy of Sciences, Guiyang, 550009, Guizhou Province, China Hapuarachchi KK, Wen TC, Deng CY, Kang JC, Hyde KD – Mycosphere Essays 1: Taxonomic confusion in the Ganoderma lucidum species complex. Mycosphere 6(5), 542–559, Doi 10.5943/mycosphere/6/5/4 Abstract The genus Ganoderma (Ganodermataceae) has been widely used as traditional medicines for centuries in Asia, especially in China, Korea and Japan. Its species are widely researched, because of their highly prized medicinal value, since they contain many chemical constituents with potential nutritional and therapeutic values. Ganoderma lucidum (Lingzhi) is one of the most sought after species within the genus, since it is believed to have considerable therapeutic properties. In the G. lucidum species complex, there is much taxonomic confusion concerning the status of species, whose identification and circumscriptions are unclear because of their wide spectrum of morphological variability. In this paper we provide a history of the development of the taxonomic status of the G.
    [Show full text]
  • Ganoderma Sichuanense (Ganodermataceae, Polyporales)
    A peer-reviewed open-access journal MycoKeys 22: 27–43Ganoderma (2017) sichuanense (Ganodermataceae, Polyporales) new to Thailand 27 doi: 10.3897/mycokeys.22.13083 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Ganoderma sichuanense (Ganodermataceae, Polyporales) new to Thailand Anan Thawthong1,2,3, Kalani K. Hapuarachchi1,2,3, Ting-Chi Wen1, Olivier Raspé5,6, Naritsada Thongklang2, Ji-Chuan Kang1, Kevin D. Hyde2,4 1 The Engineering Research Center of Southwest Bio–Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 School of science, Mae Fah Luang University, Chiang Rai 57100, Thailand 4 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 5 Botanic Garden Meise, Nieuwe- laan 38, 1860 Meise, Belgium 6 Fédération Wallonie-Bruxelles, Service général de l’Enseignement universitaire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Bruxelles, Belgium Corresponding author: Ting-Chi Wen ([email protected]) Academic editor: R.H. Nilsson | Received 5 April 2017 | Accepted 1 June 2017 | Published 7 June 2017 Citation: Thawthong A, Hapuarachchi KK, Wen T-C, Raspé O, Thongklang N, Kang J-C, Hyde KD (2017) Ganoderma sichuanense (Ganodermataceae, Polyporales) new to Thailand. MycoKeys 22: 27–43. https://doi.org/10.3897/ mycokeys.22.13083 Abstract Ganoderma sichuanense (Ganodermataceae) is a medicinal mushroom originally described from China and previously confused with G. lucidum. It has been widely used as traditional medicine in Asia since it has potential nutritional and therapeutic values.
    [Show full text]
  • A Revised Family-Level Classification of the Polyporales (Basidiomycota)
    fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification.
    [Show full text]
  • Observations Pathogenicity Experiments on Gsnodermcr
    PALMS Ganodermain Florida:Elliott & Broschat Volume 45(2) 2001 Observations and M. t. Eluorr Pathogenicity AND T. K. BnoscHer Universityof Florida Experiments Fort LauderdaleResearch and EducationCenter 3205 CollegeAvenue on GsnodermcrFort Lauderdale,Floricla zonatum in 33314 USA Florida Ganoderma butt rot of palms, caused by Ganoderma zonatum, is a widespread and serious disease in Florida, USA. The means by which the fungus invades healthy palm trunks is not known. However, infection appears to begin at the center of the base of palm trunks and spreads outrvard and upwards from there, eventually producing a hard, shelf-like structure that is the basidiocarp (conk). Basidiospores produced within the conk may be the primary method for spreading the fungus in the urban landscape. Wilt symptoms are caused by the fungus rotting the xylem, as well as other trunk tissue, in the lowest 1.5 m of trunk. It is believed that most, if not all, woody palms are susceptible to this disease. Experimental attempts to inoculate healthy trees with this fungus have generally been unsuccessful. Palms are found throughout Florida (USA)in both basidiomycete fungi that are found throughout natural and landscaped settings. They are not l the world on all types of wood - gymnosperms, grown for agronomic purposes, but are important hard- and softwood dicots, and palms (Gilbertson as ornamental plants. When a list of the top ten , & Ryvarden 1986). The genus is greatly debated diseasesof Florida ornamentals was compiled in , at the specieslevel; Miller et al. (1999) described "currently 1997, Ganodermabutt rot of palms was listed as , it as chaotic." This has been due to number two (Schubert et al.
    [Show full text]
  • Ganoderma Butt Rot of Palms1 Monica L
    PP54 Ganoderma Butt Rot of Palms1 Monica L. Elliott and Timothy K. Broschat2 Summary • Because the fungus survives in the soil, planting another palm back in that same location is not recommended • Ganoderma butt rot is caused by the fungus Ganoderma without special precautions. zonatum. This fungus degrades the lignin in the lower 4–5 feet of the trunk. It does not cause a soft rot, so the Introduction truck seems hard. Ganoderma butt rot is a lethal disease of palms, both in the • All palms are considered hosts of this fungus. This fungus landscape and natural settings. While the disease is more is not a primary pathogen of any other plant family. prevalent in the southern half of the state, where palms • Symptoms may include wilting (mild to severe) or a are in greatest abundance, it is certainly not restricted to general decline. The disease is confirmed prior to palm that area. The fungus that causes the disease is distributed death by observing the basidiocarp (conk) on the trunk. throughout Florida, from Key West to Jacksonville to This is a hard, shelf-like structure that will be attached Pennsacola. It is also known to occur in Georgia and South to the lower 4–5 feet of the palm trunk. However, many Carolina. diseased palms do not produce conks prior to death. • A palm cannot be diagnosed with Ganoderma butt rot Pathogen and Hosts until the basidiocarp (conk) forms on the trunk, or the The fungal genus Ganoderma is a group of wood-decaying internal discoloration of the trunk is observed after the fungi that are found throughout the world on all types of palm is cut down.
    [Show full text]
  • Pathogenicity of Ganoderma Species on Landscape Trees in the Southeastern United States
    Plant Disease • 2018 • 102:1944-1949 • https://doi.org/10.1094/PDIS-02-18-0338-RE Pathogenicity of Ganoderma Species on Landscape Trees in the Southeastern United States Andrew L. Loyd,† Eric R. Linder, and Nicolas A. Anger, University of Florida, School of Forest Resources and Conservation, Gainesville, FL 32611; Brantlee S. Richter, University of Florida, Plant Pathology Department, Gainesville, FL 32611; Robert A. Blanchette, University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108; and Jason A. Smith, University of Florida, School of Forest Resources and Conservation, Gainesville, FL 32611 Abstract The genus Ganoderma contains species that are associated with dead and mock-inoculated control in experiment 1, but there were no differ- declining host trees. Many species have been described as pathogens in ences relative to the control in experiment 2. In both experiments, literature, because anecdotally, the presence of fruiting bodies on living G. sessile was the only species that was successfully reisolated from the trees has been widely associated with a general decline in tree health. pine and oak hosts. Although disease symptoms were not obvious, Few studies have investigated the pathogenicity of Ganoderma species the reisolation of G. sessile outside the inoculation point was a signifi- on landscape trees in the southeastern U.S. Pathogenicity tests were cant finding, and suggests that this species was capable of infecting used to determine the pathogenicity of G. curtisii, G. meredithiae, healthy sapwood. G. sessile constitutively produces chlamydospores G. sessile,andG. zonatum on young, healthy landscape trees (Pinus elliot- within its vegetative mycelium, which may contribute to its persistence tii var.
    [Show full text]
  • Introduction 1
    Introduction 1 Abstract Oil palm is frequently planted as a continuous monoculture in countries where it is cultivated. This system brings some advantages as it allows standardized agronomic practices in optimizing crop yield per unit of land. However, there are also numerous disadvantages. One of the biggest disadvantages of mono- culture is increased susceptibility to pests and diseases. Currently in South- east Asia, oil palm plantations suffer from basal stem rot (BSR) disease caused by the basidiomycete soil-borne fungus, Ganoderma spp. The disease is also known in other regions (West Africa and South America), although the in- cidences are much lower than in South-east Asia (Indonesia and Malaysia). Agronomic approaches have been developed to reduce the impact of the dis- ease. The development of integrated pest management (IPM) practices, by combining chemical, physical and biological controls, has been pursued, but has not shown an overall significant reduction in the incidences of the dis- ease. Breeding to develop Ganoderma-resistant material is considered the best additional weapon to overcome the spread of BSR disease. Field selection of mature palms is commonly used, but this can take 10–12 years of observa- tions. Therefore, the development of a quick and early screen is of particular interest. What is described in this manual involves the artificial exposure of seedlings to the disease organism in a nursery screen and recording responses. 1.1 Ganoderma Disease of Oil Palm In the past three decades, there have been three diseases particularly that have caused devastation to the oil palm industry: Ganoderma disease in South-east Asia, vascular wilt by Fusarium oxysporum f.
    [Show full text]
  • Phytoplasmas Associated with Date Palm in the Continental USA: Three 16Sriv Subgroups
    Emirates Journal of Food and Agriculture. 2016. 28(1): 17-23 doi: 10.9755/ejfa.2015-09-736 http://www.ejfa.me/ REVIEW ARTICLE Phytoplasmas associated with date palm in the continental USA: three 16SrIV subgroups Nigel A. Harrison, Monica L. Elliott* University of Florida – IFAS, Fort Lauderdale Research and Education Center, 3205 College Avenue, Fort Lauderdale, FL 33314, USA ABSTRACT Only one major group of phytoplasmas, namely group 16SrIV, has been identified in date palms in the continental United States, and only in the states of Florida and Texas where date palms are used for aesthetic purposes in the landscape and not for date production. While strains belonging to three 16SrIV group have been detected in Florida date palms (16SrIV-A, 16SrIV-D and 16SrIV-F), only subgroup 16SrIV-D strains have been detected in Texas date palms. The subgroup 16SrIV-D phytoplasmas identified in Florida and Texas appear to be genetically the same. Field symptoms caused by this group of phytoplasmas in date palms is described, along with the molecular techniques used to detect the phytoplasma in palm tissue and to identify the subgroup detected. Preventive management in the landscape is based on use of resistant palm material and liquid trunk injection of the antibiotic oxytetracycline HCl into susceptible palms. Keywords: Phoenix dactylifera; Date palm; Phytoplasma; Subgroup 16SrIV-; Subgroup 16SrIV-D INTRODUCTION behave differently in the same host plant, or are molecularly distinct based on DNA hybridization tests or can be Phytoplasmas are unculturable, cell wall-less bacteria that differentiated by serotyping or polymerase chain reaction depend on transmission from plant to plant by phloem- (PCR) assays, then these two strains warrant separate ‘Ca.
    [Show full text]
  • Morphological Reassessment and Molecular Phylogenetic Analyses of Amauroderma S.Lat
    Persoonia 39, 2017: 254–269 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.10 Morphological reassessment and molecular phylogenetic analyses of Amauroderma s.lat. raised new perspectives in the generic classification of the Ganodermataceae family D.H. Costa-Rezende1,6,*, G.L. Robledo2, A. Góes-Neto3, M.A. Reck4, E. Crespo5, E.R. Drechsler-Santos6 Key words Abstract Ganodermataceae is a remarkable group of polypore fungi, mainly characterized by particular double- walled basidiospores with a coloured endosporium ornamented with columns or crests, and a hyaline smooth Amauroderma exosporium. In order to establish an integrative morphological and molecular phylogenetic approach to clarify Ganoderma relationship of Neotropical Amauroderma s.lat. within the Ganodermataceae family, morphological analyses, in- polyporales cluding scanning electron microscopy, as well as a molecular phylogenetic approach based on one (ITS) and four systematics loci (ITS-5.8S, LSU, TEF-1α and RPB1), were carried out. Ultrastructural analyses raised up a new character for ultrastructure Ganodermataceae systematics, i.e., the presence of perforation in the exosporium with holes that are connected with hollow columns of the endosporium. This character is considered as a synapomorphy in Foraminispora, a new genus proposed here to accommodate Porothelium rugosum (≡ Amauroderma sprucei). Furtadoa is proposed to accom- modate species with monomitic context: F. biseptata, F. brasiliensis and F. corneri. Molecular phylogenetic analyses confirm that both genera grouped as strongly supported distinct lineages out of the Amauroderma s.str. clade. Article info Received: 26 January 2017; Accepted: 29 June 2017; Published: 21 September 2017.
    [Show full text]
  • Secondary Metabolites of Oil Palm Isolates of Ganoderma Zonatum Murill
    African Journal of Biotechnology Vol. 10(42), pp. 8440-8447, 8 August, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.2144 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Secondary metabolites of oil palm isolates of Ganoderma zonatum Murill. from Cameroon and their cytotoxicity against five human tumour cell lines Tonjock R. Kinge and Afui M. Mih* Department of Plant and Animal Sciences, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon. Accepted 12 May, 2011 Three lanostane-type triterpenoids [lanosta-7,9(11),24-trien-3-one 15,26-dihydroxy, lanosta-7,9(11),24- trien-26-oic,3-hydroxy and ganoderic acid y], four steroids[ (22E,24R)-ergosta-7,22-dien-3β,5 α.6 β-triol, 5α,8 α-epidiory (22E,24R-ergosta-6,22-dien-3β-ol, ergosta-5,7,22-trien-3β-ol,7 (ergosterol) and ergosta- 7,22-dien-3β-ol,6] and a benzene derivative (dimethyl phthalate) were isolated from ethyl acetate crude extract of Ganoderma zonatum Murill. of oil palm from Cameroon. Their structures were elucidated by nuclear magnetic resonance (NMR), electron impact ionization mass spectrum experiments (EI-MS) and by comparing with the data reported in literature. The highly oxygenated lanostane triterpenoid - ganoderic acid y- showed moderate cytotoxicity against two human tumour cell lines, SMMC-7721 (liver cancer) and A549 (lung cancer) with IC 50 values of 33.5 and 29.9 µM, respectively and no activity on HL-60, MCF-7 and SW480, while lanosta-7,9(11),24-trien-3-one,15;26-dihydroxy and lanosta- 7,9(11),24-trien-26-oic,3-hydroxy, showed no activity.
    [Show full text]