Geographic Process Modeling Based on Geographic Ontology Received April 10, 2018; Accepted September 25, 2018 1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Geographic Process Modeling Based on Geographic Ontology Received April 10, 2018; Accepted September 25, 2018 1 Introduction Open Geosci. 2018; 10:782–796 Research Article Open Access Yuwei Cao, Yi Huang, Jing Chen, and YeHua Sheng* Geographic Process Modeling Based on Geographic Ontology https://doi.org/10.1515/geo-2018-0061 Received April 10, 2018; accepted September 25, 2018 1 Introduction Abstract: Considerable attention has been paid to geo- Everything in the physical world is a process [1]. GIS (geo- graphic process-based studies in geographic information graphic information system) technology is currently tran- science research. Finding appropriate methods to express sitioning from a traditional emphasis on the expression geographic processes is challenging, and working to re- of geographical information to a focus on the process of veal the dynamic evolution and underlying mechanisms changes in information [2]. The modeling of geographic behind these processes is worthwhile. This research pro- processes is the basis for analyzing spatial-temporal phe- poses a process-centric ontology model that describes nomena and extracting related high-level knowledge. The the geographical environment from three perspectives, expression and analysis of geographic processes has be- namely, geographic scenes, geographic processes and ge- come the focus of GIS research. Geographic processes are ographic elements. These three aspects are combined to used to describe how geographic elements evolve and the represent the dynamic changes of geographic phenom- interactions between these elements [3]. The expression ena. This research proposes a framework and constructs and analysis of geographic processes should not only in- ten sub-ontologies. These sub-ontologies include the El- clude basic geographical information, such as location ement ontology, Scene ontology, and Process ontology. A (where), time (when) and geographic elements (what), soil erosion process is then selected to demonstrate the ap- but also elaborate on the evolution of geographic ele- plicability of this framework. The entire process is divided ments during geographic processes (how), the process of into three sub-processes (detachment, transport and de- this evolution (why) and deeper spatial-temporal seman- position), and each sub-process is described by identifying tic problems [4]. Expressing the evolution of geographic when and where the process occurred, the elements and processes expresses how geographic elements and geo- their reactions, and the changes in the geographic scene. graphic scenes change through time and space during geo- Different relationships among elements, scenes and pro- graphic processes. The interaction among geographic ele- cesses are defined to explain how and why soil erosion ments reflects the internal mechanisms of geographic pro- occurred. This proposed approach can reveal the underly- cesses and answers the important question of why geo- ing mechanisms of geographic scenes, can be used to ex- graphic processes occur. plore the occurrence and causes of geographic processes The modeling and expression of geographic processes and support the complex representation of geographic el- can be constructed as a modeling framework based on ge- ements. ographic elements that describe changes in geographic el- ements at specific times and locations, depict the states Keywords: Geographic Process Modeling; Geographic On- of geographic elements, and actualize local dynamic ex- tology; Geographic Scene; Soil Erosion Modeling pression. However, the geographic element-centric mod- Yuwei Cao, Yi Huang: Key Laboratory of Virtual Geographic En- vironment (Nanjing Normal University), Ministry of Education, *Corresponding Author: YeHua Sheng: Key Laboratory of Virtual Nanjing, 210023, China Geographic Environment (Nanjing Normal University), Ministry of State Key Laboratory Cultivation Base of Geographical Environment Education, Nanjing, 210023, China Evolution (Jiangsu Province), Nanjing, 210023, China State Key Laboratory Cultivation Base of Geographical Environment Jiangsu Center for Collaborative Innovation in Geographical Infor- Evolution (Jiangsu Province), Nanjing, 210023, China mation Resource Development and Application, Nanjing, 210023, Jiangsu Center for Collaborative Innovation in Geographical Infor- China mation Resource Development and Application, Nanjing, 210023, Jing Chen: Department of Art and Design, Nanjing Audit University China Jin Shen College, Nan Jing ,China E-mail: [email protected]; Tel.: +86-137-7060-0707 Open Access. © 2018 Yuwei Cao et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution- NonCommercial-NoDerivs 4.0 License. Geographic Process Modeling Based on Geographic Ontology Ë 783 eling method lacks the expression of complex spatial- graphic ontology is increasingly important. The National temporal relations and semantic relations among geo- Institute of Electrical and Electronics Engineers (IEEE) es- graphic elements [5, 6]. This method can only partially an- tablished a standard upper ontology working group to swer the questions when, where and what and cannot ex- develop Suggested Upper Merged Ontology (SUMO) [17]. press how geographic elements evolve at a particular time. The U.S. Department of Defense collected the "2002 CIA’s This method also cannot reveal the mechanisms under- basic national conditions"—information to develop a set lying geographic phenomena or internal geographic pro- of traffic domain ontologies [18]. Environment Ontology cesses, nor can it answer the questions how and why. Re- (ENVO) consists of classes (terms) that refer to key envi- searchers recommend this modeling method based on ge- ronment types that may be used to facilitate the retrieval ographic events [7, 8]. This method can be used to describe and integration of a broad range of biological and geo- the evolution of geographic elements, express these pro- logical data [19]. To promote interoperability with estab- cesses through a chain of events, employ events as his- lished geographic resources, many of ENVO’s geographic torical snapshots of objects, emphasize the importance of feature classes have synonyms that reference terms in geo- events, and describe the what and where questions regard- graphic resources, such as the USGS vocabularies, Alexan- ing geographic elements. However, the event-centric mod- dria Digital Library’s [20], the GeoNames geographical eling method emphasizes the results of these events and database’s feature classes, and the earthrealm ontologies focuses on the state of a geographic element at a certain of Semantic Web for Earth and Environmental Terminol- point in time but cannot explore how and why these events ogy (SWEET)[21]. SWEET ontologies are noteworthy be- occur and lacks expression of the interaction mechanisms cause SWEET is the largest geoscience data and terminol- of geographic elements. Thus, Xue [9] and Xie [10] have ogy research project and is supported by NASA [21]. SWEET proposed a process-centric geographic modeling method focuses on the expression of common concepts in the field to express the internal mechanisms of events and estab- of geographical information and disregards the most im- lish relationships, such as process-event-elements. This portant time and spatial relationships in geography, which method also describes the relations among events and ele- hinder the expression of the evolution and interaction of ments of the geographic process. In addition, this method geographic elements. The classification of geographic pro- expresses the evolution of the spatial relationships of geo- cesses is detailed. However, these classifications are not graphic elements during geographic processes [7, 11]. related to other ontologies; thus, the expression of the re- Ontology is a conceptual, formal, explicit, and shared lation among geographic fields, life entities, non-living en- specification [12]. It is a formal description of the concep- tities, time and space in the process of ontology is difficult. tual model, whereas unified modeling language (UML) is Geographic ontology provides a possible method a graphical representation of the object oriented model; of clearly expressing geographic processes. Using geo- both are embodiments of information. The difference is graphic ontology was proposed as the basic tool to ex- that ontology can express more information that is un- press concepts such as geographic processes, geographic derstandable to both humans and computers. Ontology events, and geographic phenomena [6, 22, 23]. The re- is the precise definition of the concept of knowledge and search on geographic ontology previously primarily fo- the relationship among concepts. Ontology can clearly cused on ontological theory [17, 24, 25], knowledge engi- express concepts and implied knowledge and aid in the neering [26–28], information integration [29–32] and in- formation of a knowledge network by mapping different formation retrieval [33, 34]. For the expression of geo- concepts and the extension and association of concepts. graphic processes, Grenon and Smith[6] proposed SNAP This approach objectively represents the conceptual struc- to describe an instantaneous process and SPAN ontology ture of the geographic world [13]. This approach helps to describe a continuous process. To characterize different one understand specialized knowledge and allows peo- types of geographic processes, the model divides the geo- ple to reach a common understanding along with a com- graphic process into an instantaneous process and a con- monly accepted recognition and definition of a concept.
Recommended publications
  • A Natural Case for Realism: Processes, Structures, and Laws Andrew Michael Winters University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-20-2015 A Natural Case for Realism: Processes, Structures, and Laws Andrew Michael Winters University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Philosophy of Science Commons Scholar Commons Citation Winters, Andrew Michael, "A Natural Case for Realism: Processes, Structures, and Laws" (2015). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5603 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Natural Case for Realism: Processes, Structures, and Laws by Andrew Michael Winters A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Philosophy College of Arts and Sciences University of South Florida Co-Major Professor: Douglas Jesseph, Ph.D. Co-Major Professor: Alexander Levine, Ph.D. Roger Ariew, Ph.D. Otávio Bueno, Ph.D. John Carroll, Ph.D. Eric Winsberg, Ph.D. Date of Approval: March 20th, 2015 Keywords: Metaphysics, Epistemology, Naturalism, Ontology Copyright © 2015, Andrew Michael Winters DEDICATION For Amie ACKNOWLEDGMENTS Thank you to my co-chairs, Doug Jesseph and Alex Levine, for providing amazing support in all aspects of my tenure at USF. I greatly appreciate the numerous conversations with my committee members, Roger Ariew, Otávio Bueno, John Carroll, and Eric Winsberg, which resulted in a (hopefully) more refined and clearer dissertation.
    [Show full text]
  • Applying Knowledge Bases to Make Factories Smarter
    at – Automatisierungstechnik 2019; 67(6): 504–517 Survey Felix Ocker*, Christiaan J. J. Paredis and Birgit Vogel-Heuser Applying knowledge bases to make factories smarter Anwendung von Wissensbasen zur Steigerung der Intelligenz von Fabriken https://doi.org/10.1515/auto-2018-0138 und Produktion sowie generische Top-Level-Ontologien. Received November 19, 2018; accepted February 7, 2019 Die Anwendung solcher generischen Ontologien ermög- licht die Gewinnung neuer Erkenntnisse durch die Inte- Abstract: Knowledge Bases (KBs) enable engineers to cap- gration des Wissens verschiedener Domänen, Interessens- ture knowledge in a formalized way. This formalization gruppen und Unternehmen. Um die Lücke zwischen Top- allows us to combine knowledge, thus creating the ba- Level-Ontologien und bestehenden domänenspezifschen sis for smart factories while also supporting product and KBs zu schließen, führen wir eine zwischengelagerte Ebe- production system design. Building comprehensive and ne, die “Intermediate Engineering Ontology” (IEO), ein. reusable KBs is still a challenge, though, especially for knowledge-intensive domains like engineering and pro- Schlagwörter: Intelligente Fabriken, Intelligentes Engi- duction. To cope with the sheer amount of knowledge, en- neering, Wissensbasen gineers should reuse existing KBs. This paper presents a comprehensive overview of domain-specifc KBs for pro- duction and engineering, as well as generic top-level on- 1 Introduction tologies. The application of such top-level ontologies of- fers new insights by integrating knowledge from various In a world that continues to become more interlinked, we domains, stakeholders, and companies. To bridge the gap collect an ever increasing amount of information [1]. This between top-level ontologies and existing domain KBs, we impacts complex and knowledge-intensive professions es- introduce an Intermediate Engineering Ontology (IEO).
    [Show full text]
  • Ontology for Information Systems (O4IS) Design Methodology Conceptualizing, Designing and Representing Domain Ontologies
    Ontology for Information Systems (O4IS) Design Methodology Conceptualizing, Designing and Representing Domain Ontologies Vandana Kabilan October 2007. A Dissertation submitted to The Royal Institute of Technology in partial fullfillment of the requirements for the degree of Doctor of Technology . The Royal Institute of Technology School of Information and Communication Technology Department of Computer and Systems Sciences IV DSV Report Series No. 07–013 ISBN 978–91–7178–752–1 ISSN 1101–8526 ISRN SU–KTH/DSV/R– –07/13– –SE V All knowledge that the world has ever received comes from the mind; the infinite library of the universe is in our own mind. – Swami Vivekananda. (1863 – 1902) Indian spiritual philosopher. The whole of science is nothing more than a refinement of everyday thinking. – Albert Einstein (1879 – 1955) German-Swiss-U.S. scientist. Science is a mechanism, a way of trying to improve your knowledge of na- ture. It’s a system for testing your thoughts against the universe, and seeing whether they match. – Isaac Asimov. (1920 – 1992) Russian-U.S. science-fiction author. VII Dedicated to the three KAs of my life: Kabilan, Rithika and Kavin. IX Abstract. Globalization has opened new frontiers for business enterprises and human com- munication. There is an information explosion that necessitates huge amounts of informa- tion to be speedily processed and acted upon. Information Systems aim to facilitate human decision-making by retrieving context-sensitive information, making implicit knowledge ex- plicit and to reuse the knowledge that has already been discovered. A possible answer to meet these goals is the use of Ontology.
    [Show full text]
  • How to Naturalize Sensory Consciousness and Intentionality Within a Process Monism with Normativity Gradient a Reading of Sellars
    OUP CORRECTED PROOF – FINAL, 04/23/2016, SPi 9 How to Naturalize Sensory Consciousness and Intentionality within a Process Monism with Normativity Gradient A Reading of Sellars Johanna Seibt Sellars’s philosophy has created a continuous stream of exegetical, critical, and con- structive commentary. Early commentators typically involved themselves close-up with one aspect of the complex tapestry of Sellars’s work. More recently, however, with increasing temporal distance, philosophical interaction with Sellars often aims to identify general strategies and “master thoughts.” For example, John McDowell finds in Sellars’s EPM the “master thought . that the conceptual apparatus we employ when we place things in the logical space of reasons is irreducible to any conceptual appara- tus that does not serve to place things in the logical space of reasons”; this “master thought as it were draws a line: above the line are placings in the logical space of rea- sons, below it are [“causal”] characterizations that do not do that” (McDowell 1998: 433). Similarly, Robert Brandom identifies in EPM the “master idea” that Sellars’s “two-ply account of observation” involves “two distinguishable sorts of abilities: the capacity reliably to discriminate behaviorally between different sorts of stimuli, and the capacity to take up a position in the game of giving and asking for reasons.”1 The following engagement with Sellars’s philosophy is a contribution to such endeavors of taking the larger contours into view. But my aim in presenting a wide- scope reconstruction is not to identify reasons for why and how we can leave Sellars’s philosophy safely behind.2 Rather, I will highlight elements in Sellars’s work that have 1 Brandom 2000: 599; here quoted from the English original.
    [Show full text]
  • A Review of Ontology Development Aspects
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 7, 2019 A Review of Ontology Development Aspects Nur Liyana Law Mohd Firdaus Law1, Moamin A. Marini Othman6 2 3 Mahmoud , Alicia Y.C. Tang Institute of Informatics and Computing in Energy Institute of Informatics and Computing in Energy Universiti Tenaga Nasional Universiti Tenaga Nasional, Kajang, Malaysia Kajang, Malaysia Fung-Cheng Lim4, Hairoladenan Kasim5 Christine Yong7 College of Computing and Informatics ICT Division Universiti Tenaga Nasional Tenaga Nasional Berhad Kajang, Malaysia Kuala Lumpur, Malaysia Abstract—Although it is widely recognized that ontology is definition ontology. Meanwhile from psychology‟s the main approach towards semantic interoperability among perspective, the ontology is uncommon to be used as the information systems and services, the understanding of ontology psychologists are more interested in studying on how people aspects among researchers is limited. To provide a clear insight develop concepts and enhancing it from time to time. to this problem and support researchers, we need a background understanding of various aspects related to ontology. Another article by N. Guarino, D. Oberle, and S. Staab [3] Consequently, in this paper, a comprehensive review is mentioned that ontology is mostly used with different meaning, conducted to map the literature studies to a coherent taxonomy. depending on the communities that are utilizing the ontology. These include the benefits of ontology, types of ontology, From a philosophy
    [Show full text]
  • Old and New Mechanistic Ontologies
    Chapter 3 Old and New Mechanistic Ontologies Gregor Schiemann Abstract The concept of mechanistic philosophy dates back to the beginning of the early modern period. Among the commonalities that some of the conceptions of the main contemporary representatives share with those of the leading early modern exponents is their ontological classification: as regards their basic concepts, both contemporary and early modern versions of mechanism can be divided into monist and dualist types. Christiaan Huygens’ early modern mechanistic explanation of non-­material forces and Stuart S. Glennan’s contemporary conception of mecha- nism will serve as examples of monism. As examples of dualism, I will discuss Isaac Newton’s early modern mechanistic philosophy of nature and the contempo- rary conception of mechanism proposed by Peter Machamer, Lindley Darden, and Carl F. Craver. With the ontological commonalities are associated further character- istic features of the respective types that concern, among other things, the respective understandings of fundamental theories and evaluations of scientific practice. The ontological continuity of the types does not play any role in contemporary discus- sions of the history of mechanistic philosophy. On my assessment the distinction between monism and dualism remains an unsolved problem and its persistence is an indication that this distinction is a fundamental one. 3.1 Introduction It is a matter of controversy whether one can formulate a uniform concept of mecha- nistic philosophy for a certain period and whether it can be traced back to the early modern era. While its leading contemporary exponents portray themselves as a G. Schiemann (*) Bergische Universität Wuppertal, Wuppertal, Germany e-mail: [email protected] © Springer Nature Switzerland AG 2019 33 B.
    [Show full text]
  • Web Ontologies to Categorialy Structure Reality: Representations of Human Emotional, Cognitive, and Motivational Processes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositori Obert UdL ORIGINAL RESEARCH published: 25 April 2016 doi: 10.3389/fpsyg.2016.00551 Web Ontologies to Categorialy Structure Reality: Representations of Human Emotional, Cognitive, and Motivational Processes Juan-Miguel López-Gil 1*, Rosa Gil 2 and Roberto García 2 1 Department of Computer Languages and Systems, University of the Basque Country, Vitoria-Gasteiz, Spain, 2 Department of Computer Science and Engineering, Universitat de Lleida, Lleida, Spain This work presents a Web ontology for modeling and representation of the emotional, cognitive and motivational state of online learners, interacting with university systems for distance or blended education. The ontology is understood as a way to provide the required mechanisms to model reality and associate it to emotional responses, but without committing to a particular way of organizing these emotional responses. Knowledge representation for the contributed ontology is performed by using Web Ontology Language (OWL), a semantic web language designed to represent rich and Edited by: Paul M. W. Hackett, complex knowledge about things, groups of things, and relations between things. OWL University of Oxford, UK is a computational logic-based language such that computer programs can exploit Reviewed by: knowledge expressed in OWL and also facilitates sharing and reusing knowledge using Hiroaki Wagatsuma, the global infrastructure of the Web. The proposed ontology has been tested in the field of Kyushu Institute of Technology, Japan Maya Ivanova Dimitrova, Massive Open Online Courses (MOOCs) to check if it is capable of representing emotions Bulgarian Academy of Sciences, and motivation of the students in this context of use.
    [Show full text]
  • Roles of Ontologies of Engineering Artifacts for Design Knowledge Modeling
    ROLES OF ONTOLOGIES OF ENGINEERING ARTIFACTS FOR DESIGN KNOWLEDGE MODELING Y. Kitamura The Institute of Scientific and Industrial Research, Osaka University e-mail: [email protected] Keywords: Product Knowledge Modeling, Ontology Abstract: Capturing design knowledge and its modeling are crucial issues for design support systems and design knowledge management. It is important that knowledge models are systematic, consistent, reusable and interoperable. This survey article discusses the roles of ontologies of engineering artifacts for contributing to such design knowledge modeling from a viewpoint of computer science. An ontology of artifacts, in general, consists of systematic and computational definitions of fundamental concepts and relationship which exist in the physical world related to target artifacts, and shows how to capture the artifacts. This article, firstly, discusses needs, types, levels and some examples of ontologies of engineering artifacts. Then, we discuss roles of the ontologies for design knowledge modeling such as modeling specification for consistent modeling, capturing implicit knowledge and basis of knowledge systematization. 1. INTRODUCTION knowledge about artifacts among engineering supporting systems, that is, a common data model, Designing is a creative activity using several kinds exchange and integration. In fact, one of the of knowledge. The quality of design relies heavily pioneering ontology research efforts in early 90’s on knowledge applied in the design processes. This aims at product data exchange among engineering is why capturing necessary knowledge and its tools [11]. Practical product data exchange has been modeling are recognized as crucial issues in the explored mainly for CAD data models in the design support systems.
    [Show full text]
  • A Reusable Ontology for Computer-Aided Process Engineering
    A Reusable Ontology for Computer-Aided Process Engineering Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Jan Morbach Berichter: Univ.-Prof. Dr.-Ing. Wofgang Marquardt Univ.-Prof. Dr.-Ing. habil. Prof. h.c. Dr. h.c. Günter Wozny Tag der mündlichen Prüfung: 30. März 2009 D 82 (Diss. RWTH Aachen University, 2009) 2 Danksagung Mein herzlicher Dank gilt allen gegenwärtigen und ehemaligen Mitarbeiter des Lehrstuhls für Prozesstechnik, die mich bei der Anfertigung dieser Dissertation unterstützt haben – unter anderem, indem sie die Arbeit durch Anregungen und Kritik vorangetrieben, mir bei organisatorischen und technischen Problemen geholfen und in den Kaffeepausen für willkommene Ablenkung von den fachlichen Problemen gesorgt haben. Insbesondere möchte ich mich bei Andreas Wiesner, Lars von Wedel, Manfred Theißen, Aidong Yang, Flavia Weschta und nicht zuletzt bei Herrn Professor Marquardt dafür bedanken, dass sie meine Arbeit Korrektur gelesen und durch ihre inhaltlichen und stilistischen Anmerkungen wesentlich zu deren Gelingen beigetragen haben. Hervorheben möchte ich außerdem das ebenso anregende wie freundschaftliche Arbeitsklima, dank dessen ich meine Tätigkeit am Lehrstuhl stets als angenehm und bereichernd empfunden habe. Außerhalb des Lehrstuhls gilt mein Dank vor allem meinen Eltern, meinen damaligen Mitbewohnern Katrin, Elmar und Olaf sowie meiner Freundin Flavia, die
    [Show full text]
  • Chapter 8: Categories: the Top-Level Ontology Ludger Jansen
    Chapter 8: Categories: The Top-Level Ontology Ludger Jansen The task of ontology is to represent reality or, rather, to support the sciences in their representation of reality. In the last chapter, the reader became acquainted with an important means of doing so, namely: the technique of classification. But, in any classification, what are the very first kinds? What should the top level look like? In this chapter, I attempt to answer these questions. First, I review some suggestions for top-level ontologies with the help of the criteria established in Chapter 7 (section 1). From the point of view of the philosophical tradition of ontology, the question of a top-level ontology is tantamount to the question of the most basic categories. In order to develop some alternative suggestions, the nature of categories must first be addressed. To this end, I appeal to the philosopher whose ideas are pivotal in influencing our current understanding of ontology: Aristotle (section 2). Starting from Aristotle’s list of categories (section 3), I go on to discuss three dichotomies which I recommend as candidates for the seminal principles of a top-level ontology, namely: dependent versus independent entities (section 4), continuants versus occurrents (section 5), and universals versus particulars (section 6). Finally, I discuss some categories of more complex entities like states of affairs, sets, and natural classes (section 7). 1. SUMO, CYC & Co. What should an ontology look like at the highest level? What are the most general classes of all classifications? Authors in the fields of informatics and knowledge representation have offered various suggestions.
    [Show full text]
  • A First-Order Logic Formalization of the Industrial Ontologies Foundry Signature Using Basic Formal Ontology
    A First-Order Logic Formalization of the Industrial Ontologies Foundry Signature Using Basic Formal Ontology Barry Smith a, Farhad Amerib, Hyunmin Cheongc, Dimitris Kiritsisd, Boonserm Kulvatunyoue, Dusan Sormaz f, Evan Wallacee, Chris Willg, and J. Neil Otteh, 1 aNational Center for Ontological Research, University at Buffalo bEngineering Informatics Lab, Texas State University cAutodesk Research dEPFL, ICT for Sustainable Manufacturing eNational Institute of Standards and Technology (NIST) fOhio University, Department of Industrial and Systems Engineering gDassault Systèmes hJohns Hopkins University Applied Physics Laboratory Abstract. Basic Formal Ontology (BFO) is a top-level ontology used in hundreds of active projects in scientific and other domains. BFO has been selected to serve as top-level ontology in the Industrial Ontologies Foundry (IOF), an initiative on the part of representatives from a number of branches of the advanced manufacturing industries to create a suite of ontologies to support digital manufacturing. We here present a first draft set of axioms and definitions of an IOF upper ontology descending from BFO that is designed to capture the meanings of principal terms used in manufacturing and related areas. This set of terms can be viewed as the signature common to the modules of the IOF ontology suite. Keywords. Basic Formal Ontology (BFO), Industrial Ontologies Foundry (IOF), advanced manufacturing industry, top-level ontology, first-order logic. 1. Introduction Basic Formal Ontology (BFO) is a small, top-level ontology that is used in a wide range of projects focusing especially on information-driven sciences. BFO provides ontology developers with a common, tested starting point for the formulation of definitions in a way that is designed to promote interoperability.
    [Show full text]
  • A P2P Based Service Flow System with Advanced Ontology-Based Service Profiles
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Informatics - Papers (Archive) Sciences December 2006 A P2P based Service Flow System with Advanced Ontology-based Service Profiles J. Shen University of Wollongong, [email protected] Y. Yang Swinburne University of Technology Jun Yan University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/infopapers Part of the Physical Sciences and Mathematics Commons Recommended Citation Shen, J.; Yang, Y.; and Yan, Jun: A P2P based Service Flow System with Advanced Ontology-based Service Profiles 2006. https://ro.uow.edu.au/infopapers/438 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A P2P based Service Flow System with Advanced Ontology-based Service Profiles Abstract A peer-to-peer (p2p) based service flow management system, SwinDeW-S, could support decentralised Web service composition, deployment and enactment. However, traditional workflow definition languages, such as extended XPDL and service-oriented BPEL4WS, have become insufficiento t specify business process semantics, especially the descriptions of inputs, outputs, preconditions and effects. In this paper, we propose a novel solution based on OWL-S, a semantic Web ontology language that leverages service discovery, invocation and negotiation more effectively. The enhanced SwinDeW-S architecture is adapted with advanced ontology-based service profiles, and it takes advantage of a well-developed profile generation tool, which translates the BPEL4WS process models to the OWL-S profiles. As a esult,r in a new prototype equipped with both BPEL4WS and OWL-S, communications and coordination among service flow peers have become better organised and more efficient.
    [Show full text]