A Reusable Ontology for Computer-Aided Process Engineering

Total Page:16

File Type:pdf, Size:1020Kb

A Reusable Ontology for Computer-Aided Process Engineering A Reusable Ontology for Computer-Aided Process Engineering Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Jan Morbach Berichter: Univ.-Prof. Dr.-Ing. Wofgang Marquardt Univ.-Prof. Dr.-Ing. habil. Prof. h.c. Dr. h.c. Günter Wozny Tag der mündlichen Prüfung: 30. März 2009 D 82 (Diss. RWTH Aachen University, 2009) 2 Danksagung Mein herzlicher Dank gilt allen gegenwärtigen und ehemaligen Mitarbeiter des Lehrstuhls für Prozesstechnik, die mich bei der Anfertigung dieser Dissertation unterstützt haben – unter anderem, indem sie die Arbeit durch Anregungen und Kritik vorangetrieben, mir bei organisatorischen und technischen Problemen geholfen und in den Kaffeepausen für willkommene Ablenkung von den fachlichen Problemen gesorgt haben. Insbesondere möchte ich mich bei Andreas Wiesner, Lars von Wedel, Manfred Theißen, Aidong Yang, Flavia Weschta und nicht zuletzt bei Herrn Professor Marquardt dafür bedanken, dass sie meine Arbeit Korrektur gelesen und durch ihre inhaltlichen und stilistischen Anmerkungen wesentlich zu deren Gelingen beigetragen haben. Hervorheben möchte ich außerdem das ebenso anregende wie freundschaftliche Arbeitsklima, dank dessen ich meine Tätigkeit am Lehrstuhl stets als angenehm und bereichernd empfunden habe. Außerhalb des Lehrstuhls gilt mein Dank vor allem meinen Eltern, meinen damaligen Mitbewohnern Katrin, Elmar und Olaf sowie meiner Freundin Flavia, die mich bei Schwierigkeiten und Rückschlägen immer wieder motiviert und ermutigt haben. 3 4 Contents Danksagung................................................................................................................................ 3 Contents...................................................................................................................................... 5 Kurzfassung................................................................................................................................ 9 1 Introduction...................................................................................................................... 11 1.1 Motivation for the Use of Ontologies ...................................................................... 11 1.2 The Challenge of Ontology (Re)Usability ............................................................... 12 1.3 Research Context...................................................................................................... 13 1.4 Thesis Overview....................................................................................................... 13 1.5 Publications.............................................................................................................. 14 2 Scientific Background...................................................................................................... 17 2.1 Ontology in Philosophy............................................................................................ 17 2.2 Ontology in Computer Science ................................................................................ 18 2.3 Representation of Formal Ontologies ...................................................................... 19 2.3.1 Classes and Individuals.................................................................................... 20 2.3.2 Relations........................................................................................................... 20 2.3.3 Attributes.......................................................................................................... 22 2.3.4 Axioms............................................................................................................. 22 2.3.5 Modularization ................................................................................................. 23 2.3.6 Notation of Modeling Elements....................................................................... 23 2.4 Informal and Formal Specification of an Ontology ................................................. 25 2.5 What is not an Ontology........................................................................................... 25 2.6 Classification of Ontologies..................................................................................... 27 2.7 Summary .................................................................................................................. 30 3 OntoCAPE........................................................................................................................ 33 3.1 Overview and Structure............................................................................................ 33 3.1.1 Abstraction Layering........................................................................................ 34 3.1.2 Modularization ................................................................................................. 35 3.2 Representation and Dissemination........................................................................... 38 3.3 The Meta Model....................................................................................................... 39 3.3.1 Fundamentals ................................................................................................... 39 3.3.2 Overview and Structure.................................................................................... 42 3.3.3 Fundamental Concepts..................................................................................... 43 5 3.3.4 Data Structures................................................................................................. 43 3.3.5 Mereology ........................................................................................................ 44 3.3.6 Topology .......................................................................................................... 46 3.4 The Upper Level....................................................................................................... 48 3.4.1 Conceptualization of Systems.......................................................................... 50 3.4.2 Network Systems.............................................................................................. 56 3.5 The Conceptual Layer.............................................................................................. 57 3.5.1 Supporting Concepts ........................................................................................ 57 3.5.2 Material ............................................................................................................ 59 3.5.3 Chemical Process System................................................................................. 61 3.5.4 Model ............................................................................................................... 62 3.6 The Application Layers............................................................................................ 62 3.7 Design Principles of OntoCAPE.............................................................................. 65 3.7.1 Coherence......................................................................................................... 65 3.7.2 Conciseness...................................................................................................... 67 3.7.3 Intelligibility..................................................................................................... 69 3.7.4 Adaptability...................................................................................................... 72 3.7.5 Minimal Ontological Commitment.................................................................. 74 3.7.6 Efficiency ......................................................................................................... 75 3.8 Summary .................................................................................................................. 76 4 Related Work.................................................................................................................... 77 4.1 History of OntoCAPE .............................................................................................. 77 4.1.1 VeDa................................................................................................................. 77 4.1.2 CLiP ................................................................................................................. 78 4.1.3 OntoCAPE 1.0.................................................................................................. 79 4.2 Work by Others ........................................................................................................ 81 4.2.1 EngMath........................................................................................................... 82 4.2.2 YMIR ............................................................................................................... 82 4.2.3 PhysSys ............................................................................................................ 83 4.2.4 MDF ................................................................................................................. 84 4.2.5 Plant Ontology and Functional Ontology......................................................... 85 4.2.6 ISO 15926 ........................................................................................................ 86 4.3 Summary .................................................................................................................
Recommended publications
  • A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index
    University of California Santa Barbara A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index A Thesis submitted in partial satisfaction of the requirements for the degree Master of Arts in Geography by Bo Yan Committee in charge: Professor Krzysztof Janowicz, Chair Professor Werner Kuhn Professor Emerita Helen Couclelis June 2016 The Thesis of Bo Yan is approved. Professor Werner Kuhn Professor Emerita Helen Couclelis Professor Krzysztof Janowicz, Committee Chair May 2016 A Data-Driven Framework for Assisting Geo-Ontology Engineering Using a Discrepancy Index Copyright c 2016 by Bo Yan iii Acknowledgements I would like to thank the members of my committee for their guidance and patience in the face of obstacles over the course of my research. I would like to thank my advisor, Krzysztof Janowicz, for his invaluable input on my work. Without his help and encour- agement, I would not have been able to find the light at the end of the tunnel during the last stage of the work. Because he provided insight that helped me think out of the box. There is no better advisor. I would like to thank Yingjie Hu who has offered me numer- ous feedback, suggestions and inspirations on my thesis topic. I would like to thank all my other intelligent colleagues in the STKO lab and the Geography Department { those who have moved on and started anew, those who are still in the quagmire, and those who have just begun { for their support and friendship. Last, but most importantly, I would like to thank my parents for their unconditional love.
    [Show full text]
  • A Natural Case for Realism: Processes, Structures, and Laws Andrew Michael Winters University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-20-2015 A Natural Case for Realism: Processes, Structures, and Laws Andrew Michael Winters University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Philosophy of Science Commons Scholar Commons Citation Winters, Andrew Michael, "A Natural Case for Realism: Processes, Structures, and Laws" (2015). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5603 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Natural Case for Realism: Processes, Structures, and Laws by Andrew Michael Winters A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Philosophy College of Arts and Sciences University of South Florida Co-Major Professor: Douglas Jesseph, Ph.D. Co-Major Professor: Alexander Levine, Ph.D. Roger Ariew, Ph.D. Otávio Bueno, Ph.D. John Carroll, Ph.D. Eric Winsberg, Ph.D. Date of Approval: March 20th, 2015 Keywords: Metaphysics, Epistemology, Naturalism, Ontology Copyright © 2015, Andrew Michael Winters DEDICATION For Amie ACKNOWLEDGMENTS Thank you to my co-chairs, Doug Jesseph and Alex Levine, for providing amazing support in all aspects of my tenure at USF. I greatly appreciate the numerous conversations with my committee members, Roger Ariew, Otávio Bueno, John Carroll, and Eric Winsberg, which resulted in a (hopefully) more refined and clearer dissertation.
    [Show full text]
  • Ontology-Driven Automation of Iot-Based Human-Machine Interfaces Development?
    Ontology-Driven Automation of IoT-Based Human-Machine Interfaces Development? Konstantin Ryabinin1[0000−0002−8353−7641], Svetlana Chuprina1[0000−0002−2103−3771], and Konstantin Belousov1[0000−0003−4447−1288] Perm State University, Bukireva Str. 15, 614990, Perm, Russia [email protected], [email protected], [email protected] Abstract. The paper is devoted to the development of high-level tools to automate tangible human-machine interfaces creation bringing to- gether IoT technologies and ontology engineering methods. We propose using ontology-driven approach to enable automatic generation of firmware for the devices and middleware for the applications to design from scratch or transform the existing M2M ecosystem with respect to new human needs and, if necessary, to transform M2M systems into human-centric ones. Thanks to our previous research, we developed the firmware and middleware generator on top of SciVi scientific visualization system that was proven to be a handy tool to integrate different data sources, in- cluding software solvers and hardware data providers, for monitoring and steering purposes. The high-level graphical user SciVi interface en- ables to design human-machine communication in terms of data flow and ontological specifications. Thereby the SciVi platform capabilities are sufficient to automatically generate all the necessary components for IoT ecosystem software. We tested our approach tackling the real-world problems of creating hardware device turning human gestures into se- mantics of spatiotemporal deixis, which relates to the verbal behavior of people having different psychological types. The device firmware gener- ated by means of SciVi tools enables researchers to understand complex matters and helps them analyze the linguistic behavior of users of so- cial networks with different psychological characteristics, and identify patterns inherent in their communication in social networks.
    [Show full text]
  • Applying Knowledge Bases to Make Factories Smarter
    at – Automatisierungstechnik 2019; 67(6): 504–517 Survey Felix Ocker*, Christiaan J. J. Paredis and Birgit Vogel-Heuser Applying knowledge bases to make factories smarter Anwendung von Wissensbasen zur Steigerung der Intelligenz von Fabriken https://doi.org/10.1515/auto-2018-0138 und Produktion sowie generische Top-Level-Ontologien. Received November 19, 2018; accepted February 7, 2019 Die Anwendung solcher generischen Ontologien ermög- licht die Gewinnung neuer Erkenntnisse durch die Inte- Abstract: Knowledge Bases (KBs) enable engineers to cap- gration des Wissens verschiedener Domänen, Interessens- ture knowledge in a formalized way. This formalization gruppen und Unternehmen. Um die Lücke zwischen Top- allows us to combine knowledge, thus creating the ba- Level-Ontologien und bestehenden domänenspezifschen sis for smart factories while also supporting product and KBs zu schließen, führen wir eine zwischengelagerte Ebe- production system design. Building comprehensive and ne, die “Intermediate Engineering Ontology” (IEO), ein. reusable KBs is still a challenge, though, especially for knowledge-intensive domains like engineering and pro- Schlagwörter: Intelligente Fabriken, Intelligentes Engi- duction. To cope with the sheer amount of knowledge, en- neering, Wissensbasen gineers should reuse existing KBs. This paper presents a comprehensive overview of domain-specifc KBs for pro- duction and engineering, as well as generic top-level on- 1 Introduction tologies. The application of such top-level ontologies of- fers new insights by integrating knowledge from various In a world that continues to become more interlinked, we domains, stakeholders, and companies. To bridge the gap collect an ever increasing amount of information [1]. This between top-level ontologies and existing domain KBs, we impacts complex and knowledge-intensive professions es- introduce an Intermediate Engineering Ontology (IEO).
    [Show full text]
  • Patterns in Ontology Engineering: Classification of Ontology Patterns
    PATTERNS IN ONTOLOGY ENGINEERING: CLASSIFICATION OF ONTOLOGY PATTERNS Eva Blomqvist School of Engineering, Jonk¨ oping¨ University P.O. Box 1026, SE-551 11 Jonk¨ oping,¨ Sweden [email protected] Kurt Sandkuhl School of Engineering, Jonk¨ oping¨ University P.O. Box 1026, SE-551 11 Jonk¨ oping,¨ Sweden [email protected] Keywords: Ontology Engineering, Ontology Patterns, Pattern Classification. Abstract: In Software Engineering, patterns are an accepted way to facilitate and support reuse. This paper focuses on patterns in the field of Ontology Engineering and proposes a classification scheme for ontology patterns. The scheme divides ontology patterns into five levels: Application Patterns, Architecture Patterns, Design Patterns, Semantic Patterns, and Syntactic Patterns. Semantic and Syntactic Patterns are quite well-researched but the higher levels of pattern abstraction are so far almost unexplored. To illustrate the possibilities of patterns on these levels some examples are discussed, together with ideas of future work. 1 INTRODUCTION 2 ONTOLOGY PATTERNS TODAY Recent developments in the area of Ontology En- Ontology is a popular term today, used in many ar- gineering involve semi-automatic ontology construc- eas and defined in many different ways. In this paper tion to reduce time and effort of constructing an on- ontology is defined as: tology. In particular for small-scale application con- texts, reduction of effort and expert involvement is an An ontology is a hierarchically structured set of important requirement. concepts describing a specific domain of knowledge that can be used to create a knowledge base. An on- Ways of reducing this effort are to further facil- tology contains concepts, a subsumption hierarchy, itate semi-automatic construction of ontologies, but arbitrary relations between concepts, and axioms.
    [Show full text]
  • Building Ecommerce Framework for Online Shopping Using Semantic Web and Web 3.0
    ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 3, March 2016 Building Ecommerce Framework for Online Shopping using Semantic Web and Web 3.0 Pranita Barpute1, Dhananjay Solankar2, Ravi Hanwate3, Puja Kurwade4, Kiran Avhad5 Student, Computer, SAOE, Pune, India1,2,3,4 Professor, Computer, SAOE, Pune, India5 Abstract: E-commerce is one of the popular areas. In Online Shopping we can perform add, remove, edit, and update the product as per dealers and end users requirement. With the use of semantic web and web 3.0 the system performance will increase. The system should have proper user interface. The customers who visit online shopping system, they will have easy implementation of search item. This will increase the participation of various dealers for their product to get them online. For each Dealer have separate login and they also insert product, tracking products delivery for their products. The proposed system will use semantic web and web 3.0 Therefore, for Customer and also for Dealer it is useful. For both Customer and Dealers it shows own interface. Keywords: Framework, Semantic Web, Ontologies, Web 3.0, Resources Description Framework (RDF), Owl, E- commerce. I. INTRODUCTION II. LITERATURE SURVEY It is becoming a research focus about how to capture or E-commerce [1] framework is used to buy or exchange find customer's behavior patterns and realize commerce relative information via web applications and electronics intelligence by use of Web Semantic technology. device is nothing but E-commerce. This information helps Recommendation system in electronic commerce [1] is to derive different application using online shopping and one of the successful applications that are based on such E-commerce.
    [Show full text]
  • A Methodology for Engineering Domain Ontology Using Entity Relationship Model
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 8, 2019 A Methodology for Engineering Domain Ontology using Entity Relationship Model Muhammad Ahsan Raza1, M. Rahmah2, Sehrish Raza3, A. Noraziah4, Roslina Abd. Hamid5 Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia1, 2, 4, 5 Institute of Computer Science and Information Technology, The Women University, Multan, Pakistan3 Abstract—Ontology engineering is an important aspect of The proposed procedure of ontology engineering (OE) is semantic web vision to attain the meaningful representation of novel in two aspects: (1) it is based on well know ER-schema data. Although various techniques exist for the creation of which is readily available for most of the database-based ontology, most of the methods involve the number of complex organizations or can be developed efficiently for any domain of phases, scenario-dependent ontology development, and poor interest with accuracy. (2) The method proposes instant and validation of ontology. This research work presents a lightweight cost-effective rules for ER to ontology translation while approach to build domain ontology using Entity Relationship maintaining all semantic checks. The ER-schema and (ER) model. Firstly, a detailed analysis of intended domain is translation model (viewing the two facets as simple and performed to develop the ER model. In the next phase, ER to portable) support the development of ontology for any ontology (EROnt) conversion rules are outlined, and finally the knowledge domain. Focusing on the discipline of information system prototype is developed to construct the ontology. The proposed approach investigates the domain of information technology where the learning material related to the technology curriculum for the successful interpretation of curriculum is highly unstructured, we have developed an OE concepts, attributes, relationships of concepts and constraints tool that captures semantics from the ER-schema and among the concepts of the ontology.
    [Show full text]
  • Semom, a Semantic Middleware for Iot Healthcare Applications Rita Zgheib
    SeMoM, a semantic middleware for IoT healthcare applications Rita Zgheib To cite this version: Rita Zgheib. SeMoM, a semantic middleware for IoT healthcare applications. Artificial Intelligence [cs.AI]. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30250. tel-01925467 HAL Id: tel-01925467 https://tel.archives-ouvertes.fr/tel-01925467 Submitted on 16 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´e par : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Pr´esent´ee et soutenue le 12/12/2017 par : Rita ZGHEIB SeMoM: A semantic Middleware for IoT Healthcare Applications JURY Myriam LAMOLLE Professeure-Universit´ede Paris 8Rapporteur Norbert NOURY Professeur-Universit´ede LyonRapporteur Lynda TAMINE Professeure-Universit´edeToulouse3 Examinateur Ernesto EXPOSITO Professeur-Universit´ede PauExaminateur Remi´ BASTIDE Professeur-INU ChampollionDirecteur de th`ese Emmanuel CONCHON MCF-Universit´ede LimogesCodirecteur de th`ese Ecole´ doctorale et sp´ecialit´e : MITT : Domaine STIC : Intelligence Artificielle Unit´e de Recherche : Institut de Recherche en Informatique de Toulouse (UMR 5505) Directeur(s) de Th`ese : R´emiBASTIDE et Emmanuel CONCHON Rapporteurs : Myriam LAMOLLE et Norbert NOURY Acknowledgements First, I would like to thank the “Midi-Pyrenees Region" and the "CUFR Jean-François Champollion” for funding my PhD thesis.
    [Show full text]
  • Bringing Ontology Awareness Into Model Driven Engineering Platforms 1
    Bringing Ontology Awareness into Model Driven Engineering Platforms 1 Srdjan Živkovi ć, Marion Murzek, Harald Kühn BOC Information Systems GmbH, Wipplingerstrasse 1, 1010 Vienna, Austria {srdjan.zivkovic, marion.murzek, harald.kuehn}@boc-eu.com Abstract. In state-of-the-art of MDE platforms semantic technologies such as ontologies are rarely used. Our aim is to understand the role of ontologies in supporting model-driven engineering, in particular MDE platforms. MDE platforms may benefit from semantic technologies in formal model semantics and automated reasoning on different levels of the metamodelling architecture. We present an ontology-aware MDE platform architecture and outline some application scenarios where ontologies and automatic reasoning may bring benefit to such platforms. Additionally, an example of using ontologies for verification checks of mapping models in the course of metamodel composition is illustrated. Keywords: metamodelling, model-driven engineering (MDE), ontology-aware architecture, ontology application scenarios. 1 Introduction In state-of-the-art MDE platforms semantic technologies such as ontologies are rarely used. Currently, such platforms focus on aspects such as metamodelling, metamodel composition, model integration, and model transformation [1]. We are convinced that MDE platforms may benefit from semantic technologies particularly in formalizing semantics of models on different metamodelling levels, which in turn allows for application of automated reasoning. Based on this hypothesis, in this research-in-progress paper, we discuss first how a MDE platform architecture may be extended to be considered as ontology-aware (section 2). Referring to the introduced architecture, we describe some possible application scenarios where ontologies and automatic reasoning may bring benefit to such platforms (section 3).
    [Show full text]
  • Ontology to Appear in the Encyclopedia of Database Systems, Ling Liu and M
    Ontology to appear in the Encyclopedia of Database Systems, Ling Liu and M. Tamer Özsu (Eds.), Springer-Verlag, 2008. TITLE OF ENTRY Ontology BYLINE Tom Gruber, http://tomgruber.org. Formerly of Stanford University, Intraspect Software, and RealTravel.com. SYNONYMS computational ontology, semantic data model, ontological engineering DEFINITION In the context of computer and information sciences, an ontology defines a set of representational primitives with which to model a domain of knowledge or discourse. The representational primitives are typically classes (or sets), attributes (or properties), and relationships (or relations among class members). The definitions of the representational primitives include information about their meaning and constraints on their logically consistent application. In the context of database systems, ontology can be viewed as a level of abstraction of data models, analogous to hierarchical and relational models, but intended for modeling knowledge about individuals, their attributes, and their relationships to other individuals. Ontologies are typically specified in languages that allow abstraction away from data structures and implementation strategies; in practice, the languages of ontologies are closer in expressive power to first-order logic than languages used to model databases. For this reason, ontologies are said to be at the "semantic" level, whereas database schema are models of data at the "logical" or "physical" level. Due to their independence from lower level data models, ontologies are used for integrating heterogeneous databases, enabling interoperability among disparate systems, and specifying interfaces to independent, knowledge-based services. In the technology stack of the Semantic Web standards [1], ontologies are called out as an explicit layer. There are now standard languages and a variety of commercial and open source tools for creating and working with ontologies.
    [Show full text]
  • Lecture Notes Ontology Engineering
    Lecture Notes Ontology Engineering Department of Computer Science University of Cape Town, South Africa Version 1.2 2014 C. Maria Keet Lecture Notes Ontology Engineering C. Maria Keet Keywords: Ontology, ontologies, Knowledge base, Description Logics, OWL, Semantic Web, Ontology Development Copyright © 2014 by Maria Keet This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th floor, San Francisco, Cal- ifornia, 94105, USA. These Lecture Notes are typeset in LATEX Cover design by Maria Keet Printed and bound by you Contents Preface vii Course Outline ix 0.1 Aims and Synopsis . ix 0.2 Module assessment . ix 0.3 Course material . .x 0.4 Course content . .x 1 Introduction 1 1.1 What is an ontology? . .1 1.2 What does an ontology look like? . .5 1.3 What is the usefulness of an ontology? . .6 1.3.1 Data and information system integration . .7 1.3.2 Ontologies as part of a solution to other problems . 11 1.4 Success stories . 13 1.5 Outline and usage of the lecture notes . 15 1.6 Exercises . 16 1.7 Literature and reference material . 17 I Logic foundations for ontologies 19 2 First Order Logic recap 21 2.1 First order logic syntax and semantics . 21 2.2 Reasoning . 25 2.2.1 Introduction . 25 2.2.2 Basic idea . 26 2.2.3 Deduction, Abduction, Induction . 27 2.2.4 Proof .
    [Show full text]
  • Argumentation-Based Ontology Engineering
    Argumentation Technology Argumentation-Based Ontology Engineering Christoph Tempich and Rudi Studer, University of Karlsruhe Elena Simperl and Markus Luczak, Free University of Berlin H. Sofia Pinto, Technical University of Lisbon he Semantic Web envisions an infrastructure in which humans and machines seam- T lessly exchange information on the Web. For this to succeed, we need shared ontolo- gies that enable information exchange between different parties. Engineering a shared ontology in this kind of scenario is a social, evolving process, involving a geographically The DILIGENT dispersed community with different knowledge and The DILIGENT (distributed, loosely controlled, and argumentation expertise—ontology engineers, domain experts, and evolving engineering of ontologies) argumentation ontology users. framework consists of an argumentation process and framework helps Depending on the methodology used, the ontol- a formal model, and is supported technologically by ogy’s life cycle might consist of a series of stages, in a wiki-based support tool, coefficientMakna (col- capture design which the engineering team decides how to model a laborative, ontology-engineering-efficient Makna). domain to best suit the ontology users’needs and the Here, we sketch out DILIGENT’s theoretical back- deliberations in application requirements.1 Such engineering method- ground and an application scenario (typical to dis- ologies typically cover the major aspects of general tributed ontology engineering) we envisioned when ontology-engineering ontology engineering, describing related support specifying the framework’s functional requirements. methods, decisions to consider, and expected results. We also describe coefficientMakna’s design, archi- discussions. It makes However, these methodologies only marginally tecture, and implementation. We employed several address the collaborative interaction among commu- case studies to provide empirical data on the frame- consensus-building nity members who are creating an ontology.
    [Show full text]