An Explanation of Certified Pipe Welding

Total Page:16

File Type:pdf, Size:1020Kb

An Explanation of Certified Pipe Welding An Explanation of Certified Welding National Certified Pipe Welding Bureau Core Purposes of the NCPWB To engage in research and educational work that will assist the contractor in furnishing the public with safe and dependable installations through the use of certified welding To keep members of the Bureau informed of the latest scientifi- cally proven methods and supply information and data in connec- tion with certified welding To establish uniform procedures that conform with ANSI/ASME Codes for various methods of welding and to promote and develop certified welding To assist the NCPWB member contractor in providing the owner with quality welding at reduced costs through the use of certified welding We Believe in Codes The National Certified Pipe Welding Bureau has a deep and abiding belief in codes and has always promoted compliance with them. Such compliance produces sound welds and is economical for both contractor and owner. It saves resources that would otherwise be wasted in going back to correct errors. Certified Welding Through the years, standards have been established for pipe dimensions, flange and fitting dimensions or various Qualified Procedures/Qualified Welders pressures, pipe thread dimensions, and pitch. The tool The term certified welding is often used in the trade industry has provided cutting and threading tools for these without knowledge of its meaning. standards, and everyone in the industry accepts them, giv- ing little thought as to how they were established. The contractor is required to certify that the welding procedure and the welder are qualified in accordance With the application of welding to pipe fabrication and with the requirements of Section IX of the American installation, a standard was required. The standard qual- Society of Mechanical Engineers (ASME) Boiler and ifications for welding procedures, made in accordance Pressure Vessel Code. with the ANSI/ASME Boiler and Pressure Vessel Code and the ANSI/ASME B31 Codes for Pressure Piping This is where the term “certified welder” came into to ensure competent workmanship, are the generally use. It is the contractor, certifying that the work will accepted standards. The requirements are not compli- be done according to qualified welding procedures cated, but are frequently misunderstood. by welders who have been tested, and whose quali- fication test sheets are available, attesting to their The ASME Code simply states that those contractors ability to weld in accordance with the contractor’s responsible for providing welding shall establish a Welding Procedure Specifications. Responsible con- method (Welding Procedure Specification) and prove tractors will provide their certified Welding Procedure that sound welds can be made through the use of Specifications and qualification test records attesting these procedures. to the welder’s ability to perform in accordance with code requirements. What is a Welding Procedure? Your Contractor Certifies that A procedure is the description of the technique adopted to perform quality welding as required by the His Welders are Qualified applicable code. Contractor/Membership B31.5—Refrigeration Piping Code; and para. 927.5 for Contractors who are members of the National Certified B31.9—Building Services Piping Code. Welding Bureau can guarantee that the welding is per- formed in accordance with established national standards. Welding Procedure Qualification of Procedures Qualification Responsibility Section IX of the American Society of Mechanical Each employer shall be responsible for qualifying Engineers Boiler and Pressure Vessel Code sets forth any welding procedure that he intends to have used in complete detail the step-by-step process necessary by personnel of his organization. However, to avoid to qualify a procedure, including the necessary tests to duplication of effort, and subject to approval of the establish the results. owner, welding procedures qualified by a techni- cally competent group or agency may be used. (Para. It is not easy to comply with these provisions. 127.5.3 ANSI/ASME B31.1—Power Piping) Qualifying a procedure can be a very expensive endeavor, particularly in the hands of the inexperienced. It is a matter of trial and error. The cost of materi- Documentation of als, especially in alloys, can be very high, and many Procedure Qualification man-hours of technical supervision and labor can be expended before satisfactory results are obtained. The Welding Procedure Specification describes all The code bodies recognized that requiring each welding the essential, non-essential, fabricator or erector to qualify every welding procedure and supplementary essential they were using would represent an extremely wasteful (when required) variables for practice, and would cost American industry a great many each weld ing process used unnecessary dollars without improving welding technol- in the Welding Procedure ogy or fabricated product quality. Specification. Welding Procedure Specifications jointly The Mechanical Contractors Association of America, developed for use by Bureau Inc. recognized this fact and in 1944 organized the members are documented on National Certified Pipe Welding Bureau for the purpose NCPWB Form QW-482. of jointly developing and qualifying procedures with its members. These Welding Procedure Specifications Each Welding Procedure are written based on thoroughly tested and qualified Specification shall ref erence Procedure Qualification Records (PQRs) donated by the supporting Procedure members of the NCPWB Technical Committee and Qualification Record(s), reviewed by the Hartford Steam Boiler Inspection and which is a record of variables Insurance Company before publication. recorded during the welding of the test coupon and the Under the B31 Codes for Pressure Piping, Welding results of the tested specimens. Procedure Specifications that have been qualified by The Procedure Qualification a technically competent group or agency, such as the Record(s) that support the NCPWB, may be used by other member companies of Bureau Welding Procedure that group or agency, providing that each user of the Specifications are detailed on procedure quali fies at least one welder using the Welding NCPWB Form QW-483. Procedure Specification and accepts responsibility for same. The provisions for use of procedures developed by The Bureau now has more the NCPWB for piping work cov ered by the rules of the than 100 Welding Procedure ASME Boiler and Pressure Vessel Code are set forth in Specifications qualified in accor- paragraph PW-28 of Section I of that code, and respec- dance with code requirements. tive paragraphs of the ASME Codes for Pressure Piping; The policy of the Bureau states para. 127.5.3 for B31.1—Power Piping Code; para. 328.2 for B31.3—Process Piping Code; para. 527.5 for Sample welding procedure supporting documentation. that before any pipe welding is performed, the contrac- To reduce the amount of research and preparation time tor member shall submit to the owner, or his autho- required to complete the NCPWB Form QW-484, the rized representative, a copy of his Welding Procedure NCPWB has prepared for its membership pre-com- Specifications with proof of its qualification. pleted Welder Performance Qualification Test forms which have actual values and the ranges qualified for All NCPWB Welding Procedure Specifications (WPSs) each essential variable completed. These forms have have been reviewed by the Hartford Steam Boiler been prepared to meet the requirements of Section IX, Inspection and Insurance Company, which has stated in ASME Boiler and Pressure Vessel Code for processes writing that the NCPWB WPSs meet the qualification that are most commonly encountered in production requirements of Section IX, ASME Boiler and Pressure welding or “code” work. Vessel Code. Welder Qualification and Renewal Requirements Welding Procedure Specifications that Meet the Requirement Performance Qualification and Testing The purpose of the Welding Procedure Specifications The ASME Code specifies that welders shall be required (WPS) and Procedure Qualification Record (PQR) is to to demonstrate their skill, under supervised tests, to determine that the weldment proposed for the con- make sound welds using the contractor’s Welding struction is capable of providing the required proper- Procedure Specifications. ties for its intended application. The ability of thousands of welders to make quality welds using National Certified Pipe Welding Bureau Documentation of Welding Procedure Specifications has been proven for Welder Qualification all types of piping materials in general use throughout the mechanical construction industry. The employer shall maintain certified welder records and make them available to the purchaser or his agent and The National Certified Pipe Welding Bureau and the the inspector. These records show the procedures used by United Association of Journeymen & Apprentices of the employer, the date and results of the procedure and the Plumbing and Pipe Fitting Industry (UA) have performance qualification, and the identification symbol consolidated their efforts to make the welder qualifica- assigned to each performance qualification (para. 127.6 tion process more cost effective for the construction ASME B31.1, Power Piping). user. Under the joint effort, union welders are tested at the UA Authorized Test Facilities under the super- Record of Test vision and control of a contractor representative and The record of welder/welding operator performance an Authorized Test
Recommended publications
  • Tubing and Pipe
    SECTION K Pages TUBING and PIPE 3-96 Mechanical & K Structural Tubing The various tubular products have been arranged in this sec- tion according to the primary end uses for which they are manufactured: Pages MECHANICAL TUBING 97-107 Commercial and Aircraft Quality. Pipe PIPE —— Steel and Aluminum STRUCTURAL STEEL TUBING Pages 107-112 Square and Rectangular Structural Tubing AIRCRAFT STEEL TUBING HYDRAULIC LINE TUBING Pages 113-116 Refer to the index tabs following this page to locate infor- Aircraft Airframe mation regarding the various classes of tubular prod- Tubing ucts, including sizes, weights, and technical data. This arrangement is presented to make it easy for you to deter- Pages mine the availability of tubing or pipe for a particular specifica- 117-128 Hydraulic tion. However, it is often possible to substitute an item in one Line class for a similar item in another class when the latter is not Tubing available. For example, pipe and structural tubing may often be inter-changed, or a hydraulic tube may be used for a mechanical application. For critical applications, though, especially when Pages governed by the specifications, care should be taken to insure 129-135 that the tube ordered possesses the necessary properties. Titanium Tubing Sec. K Page 1 Sizes listed herein are those normally available from stock at the time of publication. However, our stocks are continually being adjusted to reflect changing demands. The item you need may have been added to stock after this book went to press. If the particular item you need cannot be supplied from stock immediately, we will endeavor to obtain it for you, either locally or from another part of the country.
    [Show full text]
  • Tube Welding MIAB Welding Machines for Pipes MIAB Machines for Welding ://Weld.Hit.Edu.Cn/~Arc , , Lin Sanbao,Dr
    ⴞᖅ ✺ᣔ✺ z A-TIG؍ㅜ1ㄐ˖儈᭸䶎⟄ॆᶱ≄փ z ✝эTIG✺ (IILFLHQW7,*ZHOGLQJWHFKQLTXHV z TOPTIG✺ z ৼ䫘ᶱTIG✺ z MIAB✺ z ਈᶱᙗㅹ⿫ᆀᕗ✺ z TIPTIG✺᧕ Dr. Sanbao LIN ----------------------------------- Department of Welding For HarbinHIT students Institute of Technology use only For HIT students use only China ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /1 ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /2 1. Limitation of conventional TIG welding z limited thickness of material which can be welded in a single pass 1.1 A-TIG✺ Weld penetration achievable in single pass TIG welding of stainless steel is limited to 3 mm when using argon as 1.1 Activating Flux Assisted TIG Welding shielding gas. z poor tolerance to some material composition (cast to cast variations) z the low productivity Poor productivity in TIG welding results from a combination of low welding speeds and in thicker material the high number of passes required to fill the joint. For HIT students use only For HIT students use only ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /3 ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /4 2. Advantages of A-TIG welding Penetration increase z The new process enables single pass welding of higher thickness plates with higher welding speed and hence reduced heat input. к˖A-TIG઼TIG✺Ⲵ⭥ᕗ z Enhanced productivity and reduced consumption of filler л˖6mmн䬸䫒ᶯˈᨀ儈⟄␡1.5-2.5ؽ wire z Residual stresses are reduced significantly (more than 70%) in A-TIG weld joints compare to conventional TIG weld joints and the weld joints are distortion free.
    [Show full text]
  • Welding Procedure Specification for Shielded Metal Arc Welding of Steel Pipe and Fittings
    LAST REVIEW DATE: 2/26/18 REVIEW CYCLE: 5 Years EFFECTIVE DATE: 3/29/18 SPECIFICATION: G-1064-22b TITLE: Welding Procedure Specification for Shielded Metal Arc Welding of Steel Pipe and Fittings VOLUME: 2 (Section 13.0), 10, and Yellow Book COURSE ID: NONE CORE GROUP: NONE TARGET AUDIENCE: Gas Welders REV 22a (04/02/18): Section 6.1 & Section 9.0 Table 5, updated time between weld passes for clarity. REV 22b (9/06/18): Cover Page, added “Gas Welders” to Target Audience. Section 12.1, added epoxy coating to list of material to be cleaned. REVISIONS: (See ) 1) Table of Contents - Added section 35.0 “Records”. Renumbered subsequent sections. 2) Section 27.1 - Reworded. Added reference to Records section. 3.) Section 31.0 - Clarified minimum cylinder length to be cut out. Added note to consult with Gas Engineering if minimum cylinder length cannot be met. 4) Section 35.0 - New section, “Records”. 5) Section 36.0 - Added reference to CI-870-1, Records Management. G-1064-22b Gas Operations Standards TITLE: Welding Procedure Specification for Shielded Metal Arc Welding of Steel Pipe and Fittings TABLE OF CONTENTS SECTION TITLE PAGE 1.0 SCOPE 3 2.0 LEGAL REQUIREMENTS 3 3.0 WELDER QUALIFICATION 3 4.0 WELDING PROCESS 3 5.0 GRADE OF PIPE, FITTINGS, AND COMPONENTS 3 6.0 TIME LAPSE BETWEEN PASSES 4 7.0 JOINT DESIGN 4 8.0 FILLER METAL 10 9.0 ELECTRIC CHARACTERISTICS 13 10.0 POSITION AND DIRECTION OF WELDING 14 11.0 NUMBER OF WELDERS 14 12.0 CLEANING 14 13.0 ALIGNMENT 14 14.0 TYPE OF LINEUP CLAMPS 15 15.0 REMOVAL OF LINEUP CLAMPS 15 16.0 PREHEAT 15 EFFECTIVE DATE: 3/29/18 EH&S REVIEW BY: W.
    [Show full text]
  • Plastic Piping Handbook Every Solution Begins with a Good Idea
    Ideas that flow. Thermoplastic Flow Solutions ® ol r t Chem - Plastic Piping Handbook Every solution begins with a good idea. We’ve got ideas that flow NIBCO INC. directly to solutions for World Headquarters Plastic 1516 Middlebury Street your industrial piping Elkhart, IN 46516-4740 Piping applications. Ideas that USA make your installations Phone: 800.343.5455 Handbook easier and more cost- Fax: 800.541.3841 Technical Service: effective. Ideas that work, Phone: 888.446.4226 and ideas that last. Our International Office: ideas are strengthened by Phone: +1.574.295.3327 Fax: +1.574.295.3455 a sound foundation for www.chemtrol.com growth and a solid commitment to service. For ideas that fit your flow-control applications, call on us. We’re Chemtrol, a product line committed to innovation, growth, and superiority in thermoplastics— ideas whose time has come. CH-HB-1116-R071020 Corzan® is a registered trademark of The Lubrizol Corporation. Tru-Bloc® is a registered trademark of NIBCO INC. Chem-Pure® is a registered trademark of NIBCO INC. Chemcock® is a registered trademark of NIBCO INC. Kynar® is a registered trademark of Arkema Inc. Chemtrol® is a brand of www.chemtrol.com Ideas that flow. PLASTIC PIPING HANDBOOK “To the best of our knowledge the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy or completeness of such information. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible long-term adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones to exist.
    [Show full text]
  • MS 547—Plastic Pipe
    Chapter 3 National Standard Material Part 642 Specifications National Engineering Handbook Material Specification 547—Plastic Pipe 1. Scope This specification covers the quality of poly vinyl chloride (PVC), polyethylene (PE), high-density polyethylene (HDPE), and acrylonitrile-butadiene-styrene (ABS) plastic pipe, fittings, and joint materials. 2. Material Pipe—The pipe must be as uniform as commercially practicable in color, opaqueness, density, and other specified physical properties. It must be free from visible cracks, holes, foreign inclusions, or other defects. The dimensions of the pipe must be measured as prescribed in ASTM D2122. Unless otherwise specified, the pipe must conform to the requirements listed in this specification and the applicable reference specifications in table 547–2, the requirements specified in Construction Specification 45, Plastic Pipe, and the requirements shown on the drawings. Fittings and joints—Fittings and joints must be of a schedule, SDR or DR, pressure class, external load carrying capacity, or pipe stiffness that equals or exceeds that of the plastic pipe. The dimensions of fittings and joints must be compatible with the pipe and measured in accordance with ASTM D2122. Joint and fitting material must be compatible with the pipe material. The joints and fittings must be as uniform as commercially practicable in color, opaqueness, density, and other specified physical properties. They must be free from visible cracks, holes, foreign inclusions, or other defects. Fittings and joints must conform to the requirements listed in this specification, the requirements of the applicable specification referenced in the ASTM or AWWA specification for the pipe, the requirements specified in Construction Specification 45, and the requirements shown on the drawings.
    [Show full text]
  • Influence of Welding Speeds on the Morphology, Mechanical Properties
    materials Article Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding Shuwan Cui 1,*, Shuwen Pang 1, Dangqing Pang 2 and Zhiqing Zhang 1 1 School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; [email protected] (S.P.); [email protected] (Z.Z.) 2 Guangxi Zhuang Autonomous Region Tobacco Company Liuzhou Tobacco Company, Liuzhou 545006, China; [email protected] * Correspondence: [email protected]; Tel.: +86-13597-0666-15 Abstract: In this paper, 8.0 mm thickness 2205 duplex stainless steel (DSS) workpieces were welded with a keyhole tungsten inert gas (K-TIG) welding system under different welding speeds. After welding, the morphologies of the welds under different welding speed conditions were compared and analyzed. The microstructure, two-phase ratio of austenite/ferrite, and grain boundary characteristics of the welded joints were studied, and the microhardness and tensile properties of the welded joints were tested. The results show that the welding speed has a significant effect on the weld morphology, the two-phase ratio, grain boundary misorientation angle (GBMA), and mechanical properties of the welded joint. When the welding speed increased from 280 mm/min to 340 mm/min, the austenite content and the two-phase ratio in the weld metal zone (WMZ) decreased. However, the ferrite Citation: Cui, S.; Pang, S.; Pang, D.; content in the WMZ increased. The proportion of the S3 coincident site lattice grain boundary Zhang, Z. Influence of Welding (CSLGB) decreased as the welding speed increased, which has no significant effect on the tensile Speeds on the Morphology, strength of welded joints.
    [Show full text]
  • Design Guidelines for Stainless Steel in Piping Systems
    DESIGN GUIDELINES FOR STAINLESS STEEL IN PIPING SYSTEMS A DESIGNERS’ HANDBOOK SERIES NO 9024 Produced by Distributed by AMERICAN IRON NICKEL AND STEEL INSTITUTE INSTITUTE DESIGN GUIDELINES FOR STAINLESS STEEL IN PIPING SYSTEMS A DESIGNERS’ HANDBOOK SERIES NO 9024 Originally, this handbook was published in 1980 by the Committee of Stainless Steel Producers, American Iron and Steel Institute. The Nickel Institute republished the handbook in 2020. Despite the age of this publication the information herein is considered to be generally valid. Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, the American Iron and Steel Institute, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein. Nickel Institute [email protected] www.nickelinstitute.org DESIGN GUIDELINES FOR STAINLESS STEEL IN PIPING SYSTEMS Introduction This publication presents information on the design, fabrication, installation and economy of stainless steel in piping systems. The guidelines presented contain Contents important information for piping specialists and design engineers that will save money, time and effort in the several diverse industries utilizing piping systems. Stainless steels are defined as iron-base alloys con- Introduction ............................................................ 3 taining 10 percent or more chromium. They are en- The Selection of a Piping System ........................... 6 gineering materials selected primarily for their excellent Stainless Steel in Piping Systems ........................... 6 resistance to corrosion, their outstanding mechanical Advantages ........................................................
    [Show full text]
  • Artigo RIOPIPELINE (English Version)
    IBP2161_17 ADVANCES IN THE GTAW PROCESS - CONTRIBUTION OF DYNAMIC FEEDING IN THE ROBUSTNESS OF WELDING OUT-OF-POSITION 1 2 3 Riffel. K.C , Silva. R. G. N , Direne Filho. H , Schwedersky, M. B4, Silva, R. H. G 5 Copyright 2017, Brazilian Petroleum, Gas and Biofuels Institute - IBP This Technical Paper was prepared for presentation at the Rio Pipeline Conference & Exhibition 2017, held between October, 24- 26, 2017, in Rio de Janeiro. This Technical Paper was selected for presentation by the Technical Committee of the event. The material as it is presented, does not necessarily represent Brazilian Petroleum, Gas and Biofuels Institute’ opinion or that of its Members or Representatives. Authors consent to the publication of this Technical Paper in the Rio Pipeline Conference & Exhibition 2017. Abstract The national energetic development is strongly linked to pipeline’s construction sites, which became strongly dependent of welding processes and its automation. For this purpose, is required research and development focusing in new processes with higher robustness which ensure great quality to welding joints. One of the biggest problems on orbital welding applications is the variation on forces direction over the weld pool, which changes depending on welding position. That is evidenced by the necessity to change welding parameters according to weld position, which requires great ability and control of the welder in mechanized welding process. That represents greater tendency to occur welding defects along the weld bead. So, this also involves a reduction in robustness and process repeatability. To this purpose, dynamic wire feeding appears in order to eliminate or mitigate the problems related to emergence of welding defects, leading to improvements like porosity reduction and great weld bead wettability.
    [Show full text]
  • Advanced Welding Processes: Technologies and Process Control
    i Advanced welding processes ii Related titles: New developments in advanced welding (ISBN-13: 978-1 85573-970-3; ISBN-10: 1-85573-970-4) Recent developments in high-technology areas have significantly transformed the welding industry where automation, computers, process control, sophisticated scientific instruments and advanced processing methods are all common. Today’s engineers and technologists have to support complex systems and apply sophisticated welding technologies. This comprehensive book discusses the changes in advanced welding technologies, preparing the reader for the modern industry. MIG welding guide (ISBN-13: 978-1-85573-947-5; ISBN-10: 1-85573-947-X) Gas metal arc welding (GMAW), also referred to as MIG (metal inert gas) welding, is one of the key processes in industrial manufacturing. The MIG welding guide provides comprehensive, easy-to-understand coverage of this widely used process. The reader is presented with a variety of topics from the choice of shielding gases, filler materials, welding equipment and lots of practical advice. The book provides an overview of new developments in various processes such as: flux-cored arc welding; new high-productive methods; pulsed MIG welding; MIG-brazing; robotic welding applications and occupational health and safety. This will be essential reading for welding engineers, production engineers, designers and all those involved in industrial manufacturing. Cumulative damage of welded joints (ISBN-13: 978-85573-938-3; ISBN-10: 1-85573-938-0) Fatigue is a mechanism of failure that involves the formation of cracks under the action of different stresses. Fatigue cracks are exceedingly difficult to see, particularly in the early stages of crack growth.
    [Show full text]
  • Pvc Piping Systems for Commercial and Industrial Applications
    PVC PIPING SYSTEMS FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS Plastic Pipe and Fittings Association © 2012 Plastic Pipe and Fittings Association (PPFA) Acknowledgments We would like to thank the following contributors to the Design Guide: The PVC and Thermoplastic Industrial Piping Systems (TIPS) Product Line Committees and member companies of the Plastic Pipe and Fittings Association (PPFA). In particular the following PPFA companies and individuals ably assisted in reviewing the text and tables and provided valuable comments which added greatly in producing a better and more accurate source document: Chuck Bush – Oatey Company Mike Cudahy – PPFA Staff Patrick Fedor – IPEX Bill Morris – Charlotte Pipe & Foundry Jack Roach – Mueller Industries Bill Weaver – Harvel Plastics Larry Workman – LASCO Fittings All text, tables and photos were prepared and or edited by David A. Chasis of Chasis Consulting, Inc. Using the Design Guide The Design Guide was created to assist engineers, installers, end-users, engineering students and building code officials in learning more of the dos and don’ts of PVC piping systems. The Design Guide is comprised of ten sections including: Introduction Features and Benefits Engineering Design Joining Methods Installation Testing and Repair Applications Building Codes, Standards, and Sample Specifications PVC Piping and the Environment Other Plastic Piping Systems In addition, in the back of the guide is the most complete appendix and glossary of PVC piping systems ever assembled. Other PPFA Educational Materials The PPFA offers a wide range of other educational materials developed to assist the engineering and construction industry to become more proficient in the use of the preferred piping system...plastics! On-site seminars, Webinars, CD-based seminars, workbooks, online tutorials and product and technical literature are available.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • Plastic Pipe Timeline Copyright © Plastic Pipe Data Collection Committee 2017All Rights Reserved
    Plastic Pipe Timeline Copyright © Plastic Pipe Data Collection Committee 2017All Rights Reserved Administered by American Gas Association 400 North Capitol Street, N.W., 4th Floor Washington, DC 20001 U.S.A. NOTICE AND COPYRIGHT The Plastic Pipe Database Committee (PPDC), composed of representatives of the American Gas Association (AGA), American Public Gas Association (APGA), Plastics Pipe Institute (PPI), National Association of Regulatory Utility Commissioners (NARUC), National Association of Pipeline Safety Representatives (NAPSR), National Transportation Safety Board (NTSB) and U.S. Department of Transportation’s (DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA), coordinates the creation and maintenance of a database (“PPDC Database”) to proactively monitor the performance of plastic pipe and metal and/or plastic appurtenances contained within plastic piping systems. While AGA provides administrative services to the PPDC, it does not independently test, evaluate, or verify the accuracy or soundness of any statements contained in the PPDC database or made by the PPDC. This document is based on information from the database that has not been verified or audited. The PPDC and the AGA disclaim liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The PPDC and the AGA also make no representation, warranty or guarantee in connection with this document, including, the accuracy or completeness of the information therein. Nothing contained in this document should be viewed as an endorsement or disapproval of any particular manufacturer or product. In issuing and making this document available, the PPDC and the AGA are not undertaking to render professional or other services for or on behalf of any person or entity.
    [Show full text]