Disertaciones Astronómicas Boletín Número 42 De Efemérides Astronómicas 29 De Julio De 2020

Total Page:16

File Type:pdf, Size:1020Kb

Disertaciones Astronómicas Boletín Número 42 De Efemérides Astronómicas 29 De Julio De 2020 Disertaciones astronómicas Boletín Número 42 de efemérides astronómicas 29 de julio de 2020 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. Los Aliens y la paradoja de Fermi. Imagen 1: Radio-telescopios para la detección y envío de señales. VLA. El principio de Copérnico es la idea de que la Tierra no se encuentra en el centro del Universo o que es de alguna manera especial. Cuando Nicolaus Copérnico lo declaró por primera vez en el siglo XVI, condujo a una forma completamente nueva de pensar sobre nuestro planeta. Desde entonces, los científicos han aplicado el principio de manera más amplia para sugerir que los humanos no tienen una visión privilegiada especial del universo. Somos simplemente observadores ordinarios sentados en un planeta ordinario en una parte ordinaria de una galaxia ordinaria. Además, el principio copernicano lleva a una nueva visión de la existencia de civilizaciones extraterrestres. Señala que en principio no hay nada especial sobre las condiciones en la Tierra que permitieron la evolución de la vida inteligente. Entonces, donde existan estas condiciones, es probable que la vida inteligente evolucione aproximadamente en la misma escala de tiempo que evolucionó aquí. La Ecuación de Drake. Imagen 2: Representación de la ecuación de Drake acerca de las probabilidades de vida en otros mundos. La ecuación de Drake comienza con una estimación del número de estrellas en la galaxia, luego calcula la fracción que tiene planetas en la zona habitable. Luego estima la fracción en la que se desarrolla la vida y luego aquellos en los que la vida se vuelve inteligente y es capaz de comunicarse. El término final es el período de tiempo durante el cual esta civilización transmite señales que podríamos detectar. El resultado (N), es la cantidad de civilizaciones con las que podríamos ser capaces de comunicarnos hoy. En 1961, el radio astrónomo Frank Drake dio forma algebraica a la idea ya establecida sobre la multiplicidad de la vida inteligente en nuestra galaxia. La llamada ecuación de Drake, que intenta estimar este número de civilizaciones, ha sido reevaluada innumerables veces por otros científicos, pero en general con el resultado de que estos otros seres deben ser abundantes. Sin embargo, incluso aceptando esta visión optimista, algunos científicos han llamado la atención sobre el hecho de que estimaciones como la ecuación de Drake no tienen en cuenta que una civilización nace y muere, y mientras perdura la vida del Universo, los dos no necesariamente suceden al tiempo. Con los años, los astrofísicos han reinterpretado estos números de numerosas maneras, revisando sus estimaciones a medida que nuevas ideas y con datos de observación que cambian las estimaciones a medida que se refinan mejores instrumentos de exploración del Universo. Pero también han ido significativamente más lejos utilizando el principio astrobiológico copernicano. Esta es la idea de que, si un planeta se encuentra en la zona habitable de un sistema que es rico en los elementos más pesados necesarios para la vida, entonces la vida inteligente surgirá en el tiempo de entre 4.500 y 5.500 millones de años. La razón es que la vida inteligente surgió durante más de 5 mil millones de años en la Tierra, y no hay nada especial en nuestro rincón del Universo. Por lo tanto, lo mismo sucederá en la misma escala de tiempo en otras esquinas similares. Sin embargo, esta es una suposición mucho más estricta que imaginar que la vida puede surgir en cualquier momento después de que un planeta tenga 5 mil millones de años (muchas estrellas tienen 10 mil millones de años). Es por eso que los investigadores llaman a esto la Condición Fuerte. Cuando los astrónomos ingresan estos números en la ecuación de Drake, el número de civilizaciones es enorme. Pero hay otro factor limitante: el período de tiempo durante el cual se comunican estas civilizaciones, ya sea siglos, milenios o incluso más. Obviamente, cuanto más tiempo puedan comunicarse, más probabilidades hay de que se superpongan con ellos. Los resultados hacen una lectura interesante. En la Condición Fuerte se encuentra que debería haber al menos 36 civilizaciones dentro de nuestra galaxia, aunque el número podría ser de hasta 211, y tan poco como de cuatro. Imagen 3: Enrico Fermi fue el ganador del Premio Nobel de física de 1938, dirigió el equipo que desarrolló el primer reactor nuclear del mundo en la Universidad de Chicago y fue un colaborador clave del Proyecto Manhattan. La línea de razonamiento a menudo atribuida a Fermi, en su conversación a la hora del almuerzo, es así: puede haber muchos planetas habitables similares a la Tierra en nuestra galaxia, la Vía Láctea. Si la vida inteligente y la civilización tecnológica surgen en cualquiera de ellos, esa civilización eventualmente inventará un medio de viaje interestelar. Colonizará los sistemas estelares cercanos. Estas colonias enviarán sus propias expediciones colonizadoras, y el proceso continuará inevitablemente hasta que se haya alcanzado cada planeta habitable en la galaxia. Realmente no existe la paradoja de Fermi, simplemente existe la pregunta de Fermi "¿Dónde están todos?", A la que hay muchas respuestas posibles. La respuesta que Fermi prefirió parece ser que, o el viaje interestelar no es factible debido a las enormes distancias involucradas, o simplemente la Tierra nunca ha sido alcanzada por viajeros extraterrestres. Las distancias interestelares son realmente vastas. Si todo el sistema solar fuera de la órbita de Neptuno se redujera al tamaño de un cuarto estadounidense, la estrella más cercana, Proxima Centauri, todavía estaría a la longitud de un campo de fútbol. Una nave espacial práctica necesitaría viajar muy rápido, a una fracción apreciable de la velocidad de la luz, o ser capaz de soportar a su tripulación durante mucho tiempo. Si bien cualquiera de los dos es teóricamente posible, el viaje interestelar parece ser que la humanidad actual es una tarea tan grandiosa que no está claro si alguna civilización podría o estaría dispuesta a reunir el enorme recurso Imagen 4: Imagen que muestra el estado de la expansión actual de las señales emitidas desde la Tierra hacia el espacio. Crédito: The Planetary Society. La realidad impone una limitación drástica: incluso las comunicaciones no pueden viajar más rápido que la luz. El diámetro de nuestra galaxia es de más de 150,000 años luz. Hemos estado transmitiendo señales de radio durante poco más de un siglo, por lo que nuestra presencia solo se pudo detectar en un radio de aproximadamente 100 años luz alrededor de la Tierra. Esta misma limitación se aplica a la posibilidad de recibir señales de otras civilizaciones, dado que la velocidad de la luz es universal. En 2016, un estudio introdujo en un modelo ciertos parámetros estimados sobre la distribución de estrellas en la galaxia y la posible frecuencia de la existencia de vida, y concluyó que solo el 1% de la galaxia podría haber sido cubierta por transmisiones de radio desde diferentes planetas, y que todavía tendremos que esperar unos 1.500 años para tener una buena posibilidad de ser contactado por alguna transmisión alienígena. En 2015, dos astrónomos del Space Telescope Science Institute estimaron la posibilidad de otras civilizaciones en el Universo en un 92%, pero a lo largo de toda su historia. La mala noticia es que el 92% de los planetas similares al nuestro en toda la historia del Universo aún no se han formado. La conclusión es que los humanos hemos emergido demasiado pronto, y probablemente no estaremos aquí cuando aparezcan otros seres inteligentes. Además, de acuerdo con cierta hipótesis, el hecho de que hayamos llegado primero podría evitar que alguien más exista, si ocurriera que la expansión de una civilización tiende a eliminar a otros sin siquiera darse cuenta. Imagen 5: Kepler de la NASA descubre el primer planeta del tamaño de la Tierra en la "zona habitable" de otra estrella. Crédito: NASA Ames / Instituto SETI / JPL-Caltech. La hipótesis de ‘Zoo’. El pionero de la exploración espacial Konstantin Tsiolkovsky ya había reflexionado sobre la paradoja de Fermi en sus manuscritos de décadas antes que el propio Fermi. En 1933 escribió que los seres extraterrestres, infinitamente más avanzados que nosotros, encontrarían el mismo interés en comunicarse con nosotros; que trataríamos de comunicarnos con ellos como lobos, serpientes o gorilas. Cuarenta años después, el radio astrónomo John Ball llegó a una visión similar, afirmando que los extraterrestres "nos han apartado como parte de un área silvestre o zoológico". Esta llamada hipótesis del zoológico, dice que otras criaturas inteligentes nos observan sin revelar su presencia, siendo nosotros como animales en una reserva natural. Fue examinada en 1977 por Thomas Kuiper y Mark Morris, quienes argumentaron que los extraterrestres nos mantienen en cuarentena hasta que podamos ofrecer algo utilizable. Estas ideas continúan ocupando el pensamiento teórico de algunos científicos. Sin embargo, cuando se lo lleva al ámbito de las simulaciones, este aislamiento deliberado acordado por todas las demás civilizaciones requeriría una sincronía entre los miembros del llamado "Club Galáctico" que probablemente no pueda ocurrir en nuestra galaxia. Imagen 6: Hipótesis del zoológico que pone como hipótesis que, si existen civilizaciones presentes, no interactúan por diferentes razones. La misión Perseverance. Imagen 7: Imagen de los instrumentos a bordo del rover Perseverance. Crédito NASA/JPL-Caltech. Perseverance es un vehículo tipo Mars rover fabricado por JPL, y forma parte de la misión espacial Mars 2020 del Programa de Exploración de Marte de la NASA con destino al planeta rojo. Su diseño es casi idéntico al rover Curiosity, controlará siete instrumentos científicos para estudiar la superficie marciana empezando desde el cráter Jezero, llevará a bordo 23 cámaras y dos micrófonos.
Recommended publications
  • February 2018 BRAS Newsletter
    Novemb Monthly Meeting Monday, February 12th at 7PM at HRPO er 2017 Issue nd (Monthly meetings are on 2 Mondays, Highland Road Park Observatory) . Program: Star Clusters, a presentation by Rory Bentley. What's In This Issue? President’s Message Secretary's Summary Outreach Report Light Pollution Committee Report Recent Forum Entries 20/20 Vision Campaign Messages from the HRPO Friday Night Lecture Series Globe at Night Adult Astronomy Courses International Astronomy Day Observing Notes – Canis Minor, The Little Dog & Mythology Like this newsletter? See past issues back to 2009 at http://brastro.org/newsletters.html Newsletter of the Baton Rouge Astronomical Society February 2018 © 2018 President’s Message We are now entering the month of February 2018. This month will be unusual for the fact there will be no full moon. This lack of a full moon can happen because the Moon's synodic orbit around Earth takes longer than the 28 days in February. I would remind you that our monthly meeting is on 12th of February at 7 pm. There will be a talk on star clusters given by Rory Bentley. I would also like to remind you of our Business Meeting which will be 7 pm on 7th of February at HRPO. We are investigating ideas which include: an asteroid observing group 2018 Officers: an astrophotography study group President: Steven M. Tilley a BRAS Youtube channel Vice-President: Scott Louque adding additional stargazes for BRAS members Secretary: Krista Reed ways to better utilize BRAS equipment Treasurer: Trey Anding adding another dark sky site BRAS Liaison for BREC: We may not do everything listed if there is not sufficient interest Chris Kersey from members, so if you are willing to help let us know.
    [Show full text]
  • The Radio Astronomy of Bruce Slee
    CSIRO PUBLISHING Review www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2004, 21, 23–71 From the Solar Corona to Clusters of Galaxies: The Radio Astronomy of Bruce Slee Wayne Orchiston Australia Telescope National Facility, PO Box 76, Epping NSW 2121, Australia (e-mail: [email protected]) Received 2003 May 8, accepted 2003 September 27 Abstract: Owen Bruce Slee is one of the pioneers of Australian radio astronomy. During World War II he independently discovered solar radio emission, and, after joining the CSIRO Division of Radiophysics, used a succession of increasingly more sophisticated radio telescopes to examine an amazing variety of celestial objects and phenomena. These ranged from the solar corona and other targets in our solar system, to different types of stars and the ISM in our Galaxy, and beyond to distant galaxies and clusters of galaxies. Although long retired, Slee continues to carry out research, with emphasis on active stars and clusters of galaxies. A quiet and unassuming man, Slee has spent more than half a century making an important, wide-ranging contribution to astronomy, and his work deserves to be more widely known. Keywords: biographies — Bruce Slee — radio continuum: galaxies — radio continuum: ISM — radio continuum: stars — stars: flare — Sun: corona 1 Introduction Radio astronomy is so new a discipline that it has yet to acquire an extensive historical bibliography. With founda- tions dating from 1931 this is perhaps not surprising, and it is only since the publication of Sullivan’s classic work, The Early Years of Radio Astronomy, in 1984 that schol- ars have begun to take a serious interest in the history of this discipline and its ‘key players’.
    [Show full text]
  • Three Editions of the Star Catalogue of Tycho Brahe*
    A&A 516, A28 (2010) Astronomy DOI: 10.1051/0004-6361/201014002 & c ESO 2010 Astrophysics Three editions of the star catalogue of Tycho Brahe Machine-readable versions and comparison with the modern Hipparcos Catalogue F. Verbunt1 andR.H.vanGent2,3 1 Astronomical Institute, Utrecht University, PO Box 80 000, 3508 TA Utrecht, The Netherlands e-mail: [email protected] 2 URU-Explokart, Faculty of Geosciences, Utrecht University, PO Box 80 115, 3508 TC Utrecht, The Netherlands 3 Institute for the History and Foundations of Science, PO Box 80 000, 3508 TA Utrecht, The Netherlands Received 6 January 2010 / Accepted 3 February 2010 ABSTRACT Tycho Brahe completed his catalogue with the positions and magnitudes of 1004 fixed stars in 1598. This catalogue circulated in manuscript form. Brahe edited a shorter version with 777 stars, printed in 1602, and Kepler edited the full catalogue of 1004 stars, printed in 1627. We provide machine-readable versions of the three versions of the catalogue, describe the differences between them and briefly discuss their accuracy on the basis of comparison with modern data from the Hipparcos Catalogue. We also compare our results with earlier analyses by Dreyer (1916, Tychonis Brahe Dani Scripta Astronomica, Vol. II) and Rawlins (1993, DIO, 3, 1), finding good overall agreement. The magnitudes given by Brahe correlate well with modern values, his longitudes and latitudes have error distributions with widths of 2, with excess numbers of stars with larger errors (as compared to Gaussian distributions), in particular for the faintest stars. Errors in positions larger than 10, which comprise about 15% of the entries, are likely due to computing or copying errors.
    [Show full text]
  • The Washburn Observer
    The Washburn Observer Volume 3, No. 2 • Fall 2013 • www.astro.wisc.edu New Faces in the Department This Fall Inside This Issue he Astronomy Department welcomes the Charee Peters has an MA degree incoming 2013–14 class of graduate students, in physics from the Fisk-Vanderbilt Letter from the Chair 2 T visiting faculty and postdocs. Masters-to-PhD Bridge Program and a John Chisholm Bitten by BS degree in physics from the University Astronomy and Travel Bugs 3 Elijah Bernstein-Cooper has a BS degree in phys- of Denver (Colorado). She is working with Professor Eric Wilcots on observing SKA Pathfinders: A Bright ics, with an astronomy emphasis, from Macalester Radio Future 4 College in St. Paul, Minnesota. He is working with HI regions (interstellar clouds of neutral Professor Snezana Stanimirovic to answer what hydrogen) in intermediate galaxies to Department Welcomes better understand star formation, galaxy Second Grainger Fellow 5 role atomic hydrogen plays in the formation of molecular hydrogen in giant molecular clouds. formation and evolution, and/or cosmic Solar System’s in Good magnetic fields. Hands with Anne Kinney 6 Yi-Hao Chen has an MS degree in astrophysics For Garret Frankson, from Ludwig-Maximillian University in Munich, Brianna Smart has a BS degree in astron- Astronomy Is a Passion 6 Germany and a BS degree in physics from National omy and physics from the University of Arizona in Tucson. She is working with News Notes 7 Taiwan University in Taipei. He is working with Professor Sebastian Heinz on studying the effect senior scientist Matt Haffner on studying of magnetic fields on propagation of jets from the ISM using the Wisconsin H-Alpha compact objects.
    [Show full text]
  • ROSAT Observations of Superflares on RS Cvn Systems
    ROSAT Observations of Superflares on RS CVn Systems Vito Giuseppe GrafFagnino Thesis submitted for the degree of Doctor of Philosophy, in the Faculty of Science of the University of London. UCL Mullard Space Science Laboratory Department of Space & Climate Physics U n i v e r s i t y • C o l l e g e • L o n d o n 2000 ProQuest Number: U642316 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642316 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ,,. A Mia Moglie E Miei Genitori A bstract The following thesis involves the analysis of a number of X-ray observations of two RS CVn systems, made using the ROSAT satellite. These observa­ tions have revealed a number of long-duration flares lasting several days (much longer than previously observed in the X-ray energy band) and emitting ener­ gies which total a few percent of the available magnetic energy of the stellar system and thus far greater than previously encountered. Calculations based on the spectrally fitted parameters show that simple flare mechanisms and standard two-ribbon flare models cannot explain the observations satisfacto­ rily and continued heating was observed during the outbursts.
    [Show full text]
  • The Formation and Assembly History of the Milky Way Revealed by Its Globular Cluster Population J
    MNRAS 000,1–22 (2018) Preprint 5 September 2018 Compiled using MNRAS LATEX style file v3.0 The formation and assembly history of the Milky Way revealed by its globular cluster population J. M. Diederik Kruijssen,1? Joel L. Pfeffer,2 Marta Reina-Campos,1 Robert A. Crain2 and Nate Bastian2 1Astronomisches Rechen-Institut, Zentrum f¨urAstronomie der Universit¨atHeidelberg, M¨onchhofstraße 12-14, 69120 Heidelberg, Germany 2Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom Accepted 2018 June 12. Received 2018 June 8; in original form 2018 March 25 ABSTRACT We use the age-metallicity distribution of 96 Galactic globular clusters (GCs) to infer the for- mation and assembly history of the Milky Way (MW), culminating in the reconstruction of its merger tree. Based on a quantitative comparison of the Galactic GC population to the 25 cosmological zoom-in simulations of MW-mass galaxies in the E-MOSAICS project, which self-consistently model the formation and evolution of GC populations in a cosmological con- text, we find that the MW assembled quickly for its mass, reaching f25; 50g% of its present-day halo mass already at z = f3; 1:5g and half of its present-day stellar mass at z = 1:2. We recon- struct the MW’s merger tree from its GC age-metallicity distribution, inferring the number of mergers as a function of mass ratio and redshift. These statistics place the MW’s assembly rate among the 72th-94th percentile of the E-MOSAICS galaxies, whereas its integrated prop- erties (e.g.
    [Show full text]
  • Re-Affirming the Connection Between the Galactic Stellar Warp and The
    A&A 472, L47–L50 (2007) Astronomy DOI: 10.1051/0004-6361:20077813 & c ESO 2007 Astrophysics Letter to the Editor Re-affirming the connection between the Galactic stellar warp and the Canis Major over-density M. López-Corredoira1 ,Y.Momany2,S.Zaggia2, and A. Cabrera-Lavers1,3 1 Instituto de Astrofísica de Canarias, C/.Vía Láctea, s/n, 38200 La Laguna (S/C de Tenerife), Spain e-mail: [email protected] 2 INAF – Oss. Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 GTC Project Office, C/.Vía Láctea, s/n, 38200 La Laguna (S/C de Tenerife), Spain Received 8 May 2007 / Accepted 27 July 2007 ABSTRACT Aims. We aim to understand the real nature of the stellar overdensity at southern galactic latitudes in the region of CMa. Methods. We perform a critical re-analysis and discussion of recent results presented in the literature which interpret the CMa over- density as the signature of an accreting dwarf galaxy or a new substructure within the Galaxy. Several issues are addressed. Results. We show that arguments against the “warp” interpretation are based on an erroneous perception of the Milky Way. There is nothing anomalous with colour–magnitude diagrams on opposite sides of the average warp mid-plane being different. We witnessed the rise and fall of the blue plume population, first attributed to young stars in a disrupting dwarf galaxy and now discarded as a nor- mal disc population. Similarly, there is nothing anomalous in the outer thin+thick disc metallicities being low (−1 < [Fe/H] < −0.5), and spiral arms (as part of the thin disc) should, and do, warp.
    [Show full text]
  • The Pulsation Properties of Procyon A
    Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 11-1-1999 The Pulsation Properties of Procyon A Brian Chaboyer Dartmouth College P. Demarque Yale University D. B. Guenther Saint Mary's University Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Stars, Interstellar Medium and the Galaxy Commons Dartmouth Digital Commons Citation Chaboyer, Brian; Demarque, P.; and Guenther, D. B., "The Pulsation Properties of Procyon A" (1999). Dartmouth Scholarship. 2275. https://digitalcommons.dartmouth.edu/facoa/2275 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. The Astrophysical Journal, 525:L41±L44, 1999 November 1 q 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE PULSATION PROPERTIES OF PROCYON A Brian Chaboyer Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755-3528; [email protected] P. Demarque Department of Astronomy and Center for Solar and Space Research, Yale University, Box 208101, New Haven, CT 06520-8101; [email protected] and D. B. Guenther Department of Astronomy and Physics, Saint Mary's University, Halifax, NS B3H 3C3, Canada; [email protected] Received 1999 August 13; accepted 1999 September 1; published 1999 October 5 ABSTRACT A grid of stellar evolution models for Procyon A has been calculated. These models include the best physics available to us (including the latest opacities and equation of state) and are based on the revised astrometric mass of Girard et al.
    [Show full text]
  • Bibliography from ADS File: Byrne.Bib June 27, 2021 1
    Bibliography from ADS file: byrne.bib Foster, D. C., Byrne, P. B., Rolleston, W. R. J., & Hawley, S. L., “VRI photometry August 16, 2021 of the young open cluster IC 2602”, 1996ASPC..109..357F ADS Lanzafame, A. C. & Byrne, P. B., “Helium lines in late-type dwarfs.”, 1995A&A...303..155L ADS Zboril, M., Byrne, P. B., & Rolleston, W. R. J., “Erratum: Metallicity and pho- Keenan, F. P., Brekke, P., Byrne, P. B., & Greer, C. J., “The OV tospheric abundances in field K and M dwarfs”, 1998MNRAS.301.1104Z 1371.29A/1218.35A emission-line ratio in solar and stellar spectra”, ADS 1995MNRAS.276..915K ADS Short, C. I., Byrne, P. B., & Panagi, P. M., “The chromosphere of II Pegasi: multi- Barrado, D. & Byrne, P. B., “VizieR Online Data Catalog: BVRI CCD photom- line modelling of an RS Canum Venaticorum star”, 1998A&A...338..191S etry of NGC 5460 (Barrado+, 1995)”, 1995yCat..41110275B ADS ADS Vennes, S., Mathioudakis, M., Doyle, J. G., Thorstensen, J. R., & Byrne, P. B., Zboril, M. & Byrne, P. B., “Metallicity and photospheric abundances in field K “Discovery of a white dwarf companion (EUVE J0254-053) to the K0 IV star and M dwarfs”, 1998MNRAS.299..753Z ADS HD18131”, 1995A&A...299L..29V ADS Byrne, P. B., Abdul Aziz, H., Amado, P. J., et al., “The photosphere and chromo- Byrne, P. B., Panagi, P. M., Lanzafame, A. C., et al., “The photosphere and sphere of the RS Canum Venaticorum star, II Pegasi. II. A multi-wavelength chromosphere of the RS Canum Venaticorum star, II Pegasi I. Spots and chro- campaign in August/September 1992”, 1998A&AS..127..505B ADS mospheric emission in 1991.”, 1995A&A...299..115B ADS Theissen, A., Foster, D.
    [Show full text]
  • Bibliography from ADS File: Shibata.Bib August 16, 2021 1
    Bibliography from ADS file: shibata.bib Airapetian, V. S., Barnes, R., Cohen, O., et al., “Impact of space August 16, 2021 weather on climate and habitability of terrestrial-type exoplanets”, 2020IJAsB..19..136A ADS Seki, D., Otsuji, K., Ishii, T. T., et al., “SMART/SDDI Filament Disappearance Sakaue, T. & Shibata, K., “M-dwarf’s Chromosphere, Corona and Wind Con- Catalogue”, 2020arXiv200303454S ADS nection via the Nonlinear Alfvén Wave”, 2021arXiv210612752S ADS Namekata, K., Davenport, J. R. A., Morris, B. M., et al., “Temporal Evolution of Seki, D., Otsuji, K., Isobe, H., et al., “Small-scale Turbulent Motion Spatially Resolved Individual Star Spots on a Planet-hosting Solar-type Star: of the Plasma in a Solar Filament as the Precursor of Eruption”, Kepler-17”, 2020ApJ...891..103N ADS 2021arXiv210611875S ADS Shimojo, M., Kawate, T., Okamoto, T. J., et al., “Estimating the Tempera- Namekata, K., Maehara, H., Sasaki, R., et al., “Erratum: Optical and X-ray ture and Density of a Spicule from 100 GHz Data Obtained with ALMA”, observations of stellar flares on an active M dwarf AD Leonis with Seimei 2020ApJ...888L..28S ADS Telescope, SCAT, NICER, and OISTER”, 2021PASJ...73..485N ADS Tei, A., Gunár, S., Heinzel, P., et al., “IRIS Mg II Observations and Gutierrez, M. V., Otsuji, K., Asai, A., et al., “A three-dimensional ve- Non-LTE Modeling of Off-limb Spicules in a Solar Polar Coronal Hole”, locity of an erupting prominence prior to a coronal mass ejection”, 2020ApJ...888...42T ADS 2021PASJ...73..394G ADS Notsu, Y., Kowalski, A., Maehara, H.,
    [Show full text]
  • Constellations
    Your Guide to the CONSTELLATIONS INSTRUCTOR'S HANDBOOK Lowell L. Koontz 2002 ii Preface We Earthlings are far more aware of the surroundings at our feet than we are in the heavens above. The study of observational astronomy and locating someone who has expertise in this field has become a rare find. The ancient civilizations had a keen interest in their skies and used the heavens as a navigational tool and as a form of entertainment associating mythology and stories about the constellations. Constellations were derived from mankind's attempt to bring order to the chaos of stars above them. They also realized the celestial objects of the night sky were beyond the control of mankind and associated the heavens with religion. Observational astronomy and familiarity with the night sky today is limited for the following reasons: • Many people live in cities and metropolitan areas have become so well illuminated that light pollution has become a real problem in observing the night sky. • Typical city lighting prevents one from seeing stars that are of fourth, fifth, sixth magnitude thus only a couple hundred stars will be seen. • Under dark skies this number may be as high as 2,500 stars and many of these dim stars helped form the patterns of the constellations. • Light pollution is accountable for reducing the appeal of the night sky and loss of interest by many young people as the night sky is seldom seen in its full splendor. • People spend less time outside than in the past, particularly at night. • Our culture has developed such a profusion of electronic devices that we find less time to do other endeavors in the great outdoors.
    [Show full text]
  • Chapter 25 Vocabulary & Study Guide 1) Constellation a Constellation Is A
    Chapter 25 Vocabulary & Study Guide 1) constellation A constellation is a group of stars visible within a particular region of the night sky that appears to form a pattern. The positions of the constellations appear to change throughout the year because Earth revolves around the Sun. As the earth turns you can see different constellations. Some constellations were named after animals and some mythological characters. Some constellations were named after some scientific instruments. Constellations can be viewed after sunset and before sunrise. 2) circumpolar constellations Constellations that circle Polaris in the Northern sky and are visible all year round. If you live in the Northern Hemisphere, the constellations that circle around the North Star are visible all year. They are called circumpolar constellation because they travel in circles around the North Star. The main circumpolar constellations are Ursa Major, the Great Bear; Ursa Minor, the Little Bear; Draco, the Dragon; Cepheus, the King; and Cassiopeia, the Queen. 3) spectroscope An instrument used to break visible light from a star into its component colors or spectrum. The spectrum indicates the elements that are in the stars atmosphere. 4) absolute magnitude a measure of the amount of light given off by a star. Although it has a greater absolute magnitude than Sirius, Rigel does NOT look as bright in the night sky. 5) apparent magnitude a measure of the amount of light received on Earth. Its apparent magnitude makes Sirius the brightest star in the night sky. The apparent magnitude of a celestial body is a measure of its brightness as seen by an observer on Earth, it is what it LOOKS like.
    [Show full text]