Coherent Radio Emission from a Quiescent Red Dwarf Indicative of Star–Planet Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Coherent Radio Emission from a Quiescent Red Dwarf Indicative of Star–Planet Interaction LETTERS https://doi.org/10.1038/s41550-020-1011-9 Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction H. K. Vedantham 1,2 ✉ , J. R. Callingham 1, T. W. Shimwell 1,3, C. Tasse4, B. J. S. Pope 5, M. Bedell6, I. Snellen3, P. Best7, M. J. Hardcastle 8, M. Haverkorn9, A. Mechev3, S. P. O’Sullivan 10,11, H. J. A. Röttgering 3 and G. J. White12,13 Low-frequency (ν ≲ 150 MHz) stellar radio emission is high circularly polarized fraction of 64 ± 6% (Fig. 1). The transient expected to originate in the outer corona at heights compa- nature and high polarization fraction are inconsistent with known rable to and larger than the stellar radius. Such emission properties of extragalactic radio sources, but consistent with that from the Sun has been used to study coronal structure, mass of stellar and planetary emissions11. On the basis of the positional ejections and space-weather conditions around the planets1. co-incidence, transient nature and high circularly polarized frac- Searches for low-frequency emission from other stars have tion, we conclusively associate the radio source with GJ 1151. The detected only a single active flare star2 that is not representa- astrometric uncertainty of ~0.2″ in LoTSS data is insufficient to tive of the wider stellar population. Here we report the detec- astrometrically differentiate between the stellar corona and a hypo- tion of low-frequency radio emission from a quiescent star, GJ thetical planetary magnetosphere as the site of emission. 1151—a member of the most common stellar type (red dwarf To determine the spectro-temporal characteristics of the radio or spectral class M) in the Galaxy. The characteristics of the emission, we extracted its time-averaged spectrum and frequency- emission are similar to those of planetary auroral emissions3 averaged light curve (Methods). We found that despite temporal (for example, Jupiter’s decametric emission), suggesting a variability, the emission persisted for the entire 8 h observation. coronal structure dominated by a global magnetosphere with The emission is also detected over the entire available bandwidth, low plasma density. Our results show that large-scale cur- 120 < ν < 167 MHz (where ν is the observed frequency), and has rents that power radio aurorae operate over a vast range of an approximately flat spectral shape (Fig. 2). The in-band radio 21 1 mass and atmospheric composition, ranging from terrestrial power for an isotropic emitter is PR 2 ´ 10 ergs sÀ . The peak 12 2 planets to main-sequence stars. The Poynting flux required radiation brightness temperature Iis Tb 3:7 ´ 10 xÀ K where à to produce the observed radio emission cannot be generated x* is the radius of the emitter in unitsI of GJ 1151’s stellar radius by GJ 1151’s slow rotation, but can originate in a sub-Alfvénic R 1:3 ´ 1010 cm. à interaction of its magnetospheric plasma with a short-period I A unique aspect of this detected radio source is that it is associ- exoplanet. The emission properties are consistent with theo- ated to a star with a quiescent chromosphere. Stellar radio emission retical expectations4–7 for interaction with an Earth-size planet at gigahertz frequencies is predominately non-thermal in origin in an approximately one- to five-day-long orbit. and is powered by chromospheric magnetic activity. The majority We discovered radio emission in the direction of the quies- of stellar radio detections are of a small class of magnetically active cent red dwarf star GJ 1151 by cross-matching catalogued radio stars such as flare stars12,13 (for example, AD Leo), rapid rotators14 sources in the Low Frequency Array (LOFAR) Two-Metre Sky (for example, FK Com) and close binaries15 (for example, Algol). Survey (LoTSS) data release I8, with nearby stars within a distance GJ 1151, in contrast, is a canonical ‘quiescent’ star, such as the Sun, of d < 20 pc from the Gaia data release 2 database9. The distance cut based on all available chromospheric activity indicators (Table 1). was imposed to maximize our chances of finding inherently faint For comparison, relatively intense broadband noise storms on stellar and planetary radio emission while maintaining a low false the Sun are arcmin-scale sources with brightness temperatures of 10 9 16 association rate . We found one match at high significance: GJ Tb 10 K (ref. ). Such an emitter will be three orders of magni- 1151, which is the closest catalogued star within the radio survey tudeI fainter than the radio source in GJ 1151 if observed from the footprint. The radio source lies at a distance of 0.17(55)″ in right same distance. ascension and 0.63(45)″ in declination from the proper-motion- In addition to the quiescent nature of GJ 1151, the properties of corrected optical position of GJ 1151 (1σ errors in parentheses here- the observed radio emission are distinct from prototypical stellar after; see Extended Fig. 1). bursts at centimetre wavelengths. Stellar radio emission falls into GJ 1151 was observed by four partially overlapping LoTSS point- two broad phenomenological categories11. (1) Incoherent gyrosyn- ings conducted within a span of about one month. The LoTSS radio chrotron emission, similar to solar noise storms16, characterized by 10 source ILT J115055.50+482225.2 is detected in only one, and has a a low degree of polarization, brightness temperatures of Tb≲10 K, I 1ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands. 2Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands. 3Leiden Observatory, Leiden University, Leiden, The Netherlands. 4GEPI, Observatoire de Paris, Université PSL, CNRS, Meudon, France. 5NASA Sagan Fellow, Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY, USA. 6Flatiron Institute, Simons Foundation, New York, NY, USA. 7Institute for Astronomy, Royal Observatory, Edinburgh, UK. 8Centre for Astrophysics Research, University of Hertfordshire, Hatfield, UK. 9Radboud University Nijmegen, Nijmegen, The Netherlands. 10Hamburger Sternwarte, Universität Hamburg, Hamburg, Germany. 11School of Physical Sciences and Centre for Astrophysics and Relativity, Dublin City University, Glasnevin, Ireland. 12Department of Physics and Astronomy, The Open University, Milton Keynes, UK. 13RAL Space, STFC Rutherford Appleton Laboratory, Didcot, UK. ✉e-mail: [email protected] NatURE AstronomY | VOL 4 | JUNE 2020 | 577–583 | www.nature.com/natureastronomy 577 LETTERS NATURE ASTRONOMY 0.5 +48° 23′ 30″ 0.4 Flux density (mJy beam +48° 23′ 00″ 0.3 +48° 22′ 30″ 0.2 +48° 22′ 00″ Declination (J2000) –1 0.1 ) +48° 21′ 30″ 0 +48° 21′ 00″ 1′ 1′ 11 h 51 min 0.0 s 11 h 51 min 0.0 s 11 h 51 min 04.0 s 11 h 50 min 56.011 s h 50 min 52.011 s h 50 min 48.011 h s 51 min 04.0 s 11 h 50 min 56.011 s h 50 min 52.011 s h 50 min 48.0 s Right ascension (J2000) Right ascension (J2000) Fig. 1 | Total intensity deconvolved images of the region around GJ 1151 for two different epochs. Left panel: 16 June 2014. Right: 28 May 2014. The cross- hairs point to the location of GJ 1151 (see Extended Fig. 1 for astrometric details). The inset in both panels displays the Stokes V (circular polarization) image for the respective epoch. The time–frequency-averaged Stokes I and V flux densities are 0.89(8) mJy and 0.57(4) mJy, respectively. The grey circle in top-left corner indicates the width of the point spread function. a 1.50 b 1.50 1.25 1.25 1.00 1.00 0.75 0.75 (mJy) (mJy) ty ty 0.50 0.50 densi densi 0.25 0.25 Flux Flux 0 0 –0.25 –0.25 StokesI StokesV StokesI StokesV –0.50 –0.50 0 1 2 3 4 5 6 7 8 120 130 140 150 160 Time since MJD 56823.6251 (h) Frequency (MHz) Fig. 2 | The variability of the flux density. a,b, The temporal (a) and spectral (b) variability of the total flux density (Stokes I; black circles) and circular polarized flux density (Stokes V; magenta squares) of the radio source in GJ 1151. The spectrum is measured over the entire 8 h exposure and the time series is measured over the entire bandwidth. The error bars span ±1σ. MJD is the modified Julian date. bandwidths of Δν=ν 1 and a duration of many hours. (2) Coherent relativistic plasma are plasma and cyclotron emission, which lead to emission (plasmaI or cyclotron emission), similar to solar radio emission at harmonics of the plasma frequency νp and the cyclotron bursts, characterized by a high degree of circular polarization (up to frequency νc, respectively. 100%), narrow instantaneous bandwidths (Δν=ν 1) and a dura- Stellar busts at centimetre wavelengths have previously been suc- tion ranging from seconds to minutes. The observedI emission does cessfully modelled as fundamental plasma emission from coronal not fit into either of these phenomenological classes. It is broad- loops19. However, the emissivity of the fundamental emission drops band, has a duration of >8 h and is highly circularly polarized. The nonlinearly with decreasing frequency. For typical coronal scale closest analogue of such emission is auroral radio emission from heights of quiescent red dwarfs, the height-integrated fundamen- substellar objects such as planets and ultracool dwarfs3,17,18. While tal emission is restricted to brightness temperatures of <1011 K at canonical stellar radio bursts are powered by impulsive heating of 150 MHz (Methods), which cannot account for the observed emis- 11,19 12 plasma trapped in compact coronal loops of size much smaller sion with Tb 10 K. Second harmonic plasma emission has than the stellar radius, radio aurorae in substellar objects are driven a higher emissivityI at low frequencies but cannot attain the high by global current systems in a large-scale dipolar magnetic field.
Recommended publications
  • CARMENES Input Catalogue of M Dwarfs IV. New Rotation Periods from Photometric Time Series
    Astronomy & Astrophysics manuscript no. pk30 c ESO 2018 October 9, 2018 CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series E. D´ıezAlonso1;2;3, J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8;9, S. Vanaverbeke10;6, P. J. Amado11, V. J. S. B´ejar12;13, M. Cort´es-Contreras4, E. Herrero8;9, D. Hidalgo12;13;1, M. K¨urster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Sch¨ofer5, and L. Tal-Or5;16 1 Departamento de Astrof´ısicay Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas,Universidad Complutense de Madrid, E-280140 Madrid, Spain; e-mail: [email protected] 2 Departamento de Explotaci´ony Prospecci´onde Minas, Escuela de Minas, Energ´ıay Materiales, Universidad de Oviedo, E-33003 Oviedo, Asturias, Spain 3 Observatorio Astron´omicoCarda, Villaviciosa, Asturias, Spain (MPC Z76) 4 Centro de Astrobiolog´ıa(CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Ca~nada,Madrid, Spain 5 Institut f¨ur Astrophysik, Georg-August-Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, D-37077 G¨ottingen, Germany 6 AstroLAB IRIS, Provinciaal Domein \De Palingbeek", Verbrandemolenstraat 5, B-8902 Zillebeke, Ieper, Belgium 7 Observatorio Astron´omicoNaves, Cabrils, Barcelona, Spain (MPC 213) 8 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, E-08193 Bellaterra, Barcelona, Spain 9 Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain 10
    [Show full text]
  • Spektralanalyse Ausgewählter Carmenes Daten
    Master’s Thesis Spektralanalyse ausgewählter Carmenes Daten Spectroscopic analysis of Carmenes sample prepared by Andre Lamert from Merkers at the Institut für Astrophysik, Göttingen Thesis period: 1st April 2014 until 10th September 2014 First referee: Dr. Sandra Jeffers Second referee: Prof. Dr. Ansgar Reiners Abstract In the last years the number of detected exoplanets increased rapidly. Upcoming projects like CARMENES, which is planned to find terrestrial planets in the hab- itable zone of M-dwarfs, will close the gap of Earth-mass planets in the exoplanet distribution. This thesis investigates the spectral type, radial velocity and magnetic activity of candidate M-dwarfs for the CARMENES project input catalog CARMENCITA.It focuses on the determination of spectral M-type stars. Based on calibration func- tions of the code THE HAMMER, different atomic and molecular lines and bands are used to calculate spectral indices. With the aim of increasing the determination accuracy, I have written an algorithm which uses only few, but very sensitive indices. These are particular dominant for M-type stars. Additionally, the Hα line is used to determine the magnetic activity. To determine the spectral type, the radial velocity and an activity indicator I use 900 high-resolution spectra taken from 364 different stars of the input catalog. 348 of these spectra were provided as raw data from the CAFE spectrograph. I use the IDL-Package REDUCE for reduction and add a new flux extraction procedure and a modified order definition procedure to increase the extracted wavelength range and the quality of the extracted flux values. The writ- ten fast working spectral typing algorithm calculates quite accurate spectral types for high-resolution spectra, since the results of this typing confirm former results collected in CARMENCITA using low-resolution spectroscopy.
    [Show full text]
  • Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
    Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year.
    [Show full text]
  • HOW to CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, and RADIUS Andrew W
    The Astrophysical Journal, 804:64 (38pp), 2015 May 1 doi:10.1088/0004-637X/804/1/64 © 2015. The American Astronomical Society. All rights reserved. HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS Andrew W. Mann1,2,8,9, Gregory A. Feiden3, Eric Gaidos4,5,10, Tabetha Boyajian6, and Kaspar von Braun7 1 University of Texas at Austin, USA; [email protected] 2 Institute for Astrophysical Research, Boston University, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden 4 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA 5 Max Planck Institut für Astronomie, Heidelberg, Germany 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, USA Received 2015 January 6; accepted 2015 February 26; published 2015 May 4 ABSTRACT Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan–Boltzmann law to determine radii of 183 nearby K7–M7 single stars with a precision of 2%–5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff–radius relation depends strongly on [Fe/H],as predicted by theory.
    [Show full text]
  • 3-D Starmap 15.0 All Stars Within 15 Parsecs (50 Light-Years) of Sol
    3-D Starmap 15.0 All stars within 15 parsecs (50 light-years) of Sol. Gl 815 2.0:14.9:-1.0 All units are in parsecs. (1 parsec = 3.26 light-years) 1.5 Gl 792 Stars are plotted in cartesian x,y,z coordinates. 3.2:14.7:-0.2 X-Y plane is the plane of the galaxy. Alderamin 2.3 -2.8:14.5:2.4 +x is Coreward, -x is Rimward, NN 4276 -3.9:14.4:0.4 +y is Spinward, -y is Trailing 1.2 Star data is from HYG database. 3.2 Stars circled in green are likely to host 14.0 human-habitable planets, according to 3 Eta Cephei 1.3 -1.9:13.9:2.9 the HabCat database. Gray lines link each star with its two closest neighbors. 2.9 3.0 Green lines link habitable stars with their two Hip 101516 5.7:13.5:-2.3 closest habitable neighbors. NN 4338 B GJ 1228 -4.1:13.4:-4.8 3.0 1.5:13.4:6.2 Gl 878 2.6 GJ 1270 0.4 Links are labeled with their distance in parsecs. -4.6:13.3:0.3 -1.5:13.3:-3.3 3.1 2.6 Gl 794 NN 4109 Winchell Chung: Nyrath the nearly wise 5.5:13.1:-2.3 2.0 7.0:13.1:1.5 http://www.projectrho.com/starmap.html 13.0 Gl 738 2.3 6.5:13.0:3.4 Gl 875.1 1.9 -1.2:12.9:-5.9 2.2 1.5 1.6 2.2 2.7 NN 4073 4.6:12.6:4.5 Gl 14 -6.1:12.5:-5.5 Gl 52 2.6 Gl 806 -28..6:12.4:0.3 1.3:12.4:0.2 4.4 3.8 NN 3069 BD+27°4120 2.6 Gl 813 BD+31°3767 -8.5:12.3:-2.3 2.4:12.3:-4.1 4.9:12.3:-3.55.1:12.3:0.8 BD+57°2735 -4.8:12.2:-0.7 19 Draconis -1.2:12.1:9.0 1.7 12.0 2.1 1.3 Gl 742 26 Draconis NN 4228 3.0 -2.4:11.9:5.6 -0.2:11.9:7.6 4.3:11.6.9:-7.4 1.1 2.5 3.8 1.7 2.4 1.9 35 Gamma Cephei GJ 1243 2.1 2.9 -6.4:11.6:3.6 1.9:11.6:2.1 NN 3117 2.3 NN 4040 2.8 -9.5:11.5:0.6 1.9 2.1 4.1 3.4:11.5:6.4
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this publication click this link. https://hdl.handle.net/2066/220291 Please be advised that this information was generated on 2021-10-01 and may be subject to change. Draft version February 21, 2020 Typeset using LATEX preprint style in AASTeX63 Coherent radio emission from a quiescent red dwarf indicative of star-planet interaction H. K. Vedantham,1, 2 J. R. Callingham,1 T. W. Shimwell,1, 3 C. Tasse,4 B. J. S. Pope,5 M. Bedell,6 I. Snellen,3 P. Best,7 M. J. Hardcastle,8 M. Haverkorn,9 A. Mechev,3 S. P. O'Sullivan,10, 11 H. J. A. Rottgering,¨ 3 and G. J. White12, 13 1ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, Dwingeloo, 7991 PD, The Netherlands 2Kapteyn Astronomical Institute, University of Groningen, PO Box 72, 97200 AB, Groningen, The Netherlands 3Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands 4GEPI, Observatoire de Paris, Universit´ePSL, CNRS, 5 place Jules Janssen, 92190 Meudon, France 5NASA Sagan Fellow, Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA 6Flatiron Institute, Simons Foundation, 162 Fifth Ave, New York, NY 10010, USA 7Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ 8Centre for Astrophysics Research, University of Hertford-shire, College Lane, Hatfield AL10 9AB 9Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands 10Hamburger Sternwarte, Universit¨atHamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany 11School of Physical Sciences and Centre for Astrophysics & Relativity, Dublin City University, Glasnevin, D09 W6Y4, Ireland 12Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK 13RAL Space, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK ABSTRACT Low frequency (ν .
    [Show full text]
  • Target Selection for the SUNS and DEBRIS Surveys for Debris Discs in the Solar Neighbourhood
    Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 18 November 2009 (MN LATEX style file v2.2) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood N. M. Phillips1, J. S. Greaves2, W. R. F. Dent3, B. C. Matthews4 W. S. Holland3, M. C. Wyatt5, B. Sibthorpe3 1Institute for Astronomy (IfA), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 2School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS 3UK Astronomy Technology Centre (UKATC), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 4Herzberg Institute of Astrophysics (HIA), National Research Council of Canada, Victoria, BC, Canada 5Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge, CB3 0HA Accepted 2009 September 2. Received 2009 July 27; in original form 2009 March 31 ABSTRACT Debris discs – analogous to the Asteroid and Kuiper-Edgeworth belts in the Solar system – have so far mostly been identified and studied in thermal emission shortward of 100 µm. The Herschel space observatory and the SCUBA-2 camera on the James Clerk Maxwell Telescope will allow efficient photometric surveying at 70 to 850 µm, which allow for the detection of cooler discs not yet discovered, and the measurement of disc masses and temperatures when combined with shorter wavelength photometry. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey and the DEBRIS Herschel Open Time Key Project are complimentary legacy surveys observing samples of ∼500 nearby stellar systems. To maximise the legacy value of these surveys, great care has gone into the target selection process. This paper describes the target selection process and presents the target lists of these two surveys.
    [Show full text]
  • Rotation and Chromospheric Activity in Field M Dwarfs*
    Astron. Astrophys. 331, 581–595 (1998) ASTRONOMY AND ASTROPHYSICS Rotation and chromospheric activity in field M dwarfs? X. Delfosse1, T. Forveille1, C. Perrier1, and M. Mayor2 1 Observatoire de Grenoble, 414 rue de la Piscine, Domaine Universitaire de St Martin d’Heres,` F-38041 Grenoble, France 2 Observatoire de Geneve,` CH-1290 Sauverny, Switzerland Received 29 July 1997 / Accepted 7 November 1997 Abstract. We have obtained high resolution spectra for a younger or more massive stars: LX /Lbol and LHα /Lbol both cor- volume-limited sample of 118 field M dwarfs. From these ob- relate with v sin i for v sin i < 4 5km.s−1 and then saturate servations we derive projected rotational velocities and fluxes at respectively 10−2.5 and 10−∼3.5. − 1 in the Hα and Hβ lines . 8 stars are double-lined spectroscopic binaries with measured or probable periods short enough for ro- Key words: stars: activity – stars: rotation – stars: chromo- tation to be tidally synchronized with the orbit, and another 11 spheres – stars: coronae – stars: low-mass, brown dwarfs are visual binaries where we cannot yet separate the lines of the two stars. Of the remaining 99 stars, 24 have rotational velocities above our detection limit of 2km.s−1, and some are quite fast rotators, including two with∼ v sin i 30 km.s−1 and one with v sin i 50 km.s−1. Given the small' radii of M dwarfs, these moderate' rotational velocities correspond to rather short maxi- 1. Introduction mum rotational periods, of only 7-8 hours.
    [Show full text]
  • 3-D Starmap 12.0 All Stars Within 12 Parsecs (40 Light-Years) of Sol
    3-D Starmap 12.0 All stars within 12 parsecs (40 light-years) of Sol. All units are in parsecs. (1 parsec = 3.26 light-years) Stars are plotted in cartesian x,y,z coordinates. GJ 1243 X-Y plane is the plane of the galaxy. 1.9:11.6:2.1 +x is Coreward, -x is Rimward, NN 4201 +y is Spinward, -y is Trailing 2.9:11.3:-4.1 Star data is from HYG database. 2.1 2.9 Stars circled in green are likely to host 11.0 1.8 human-habitable planets, according to NN 4098 1.6 5.4:10.9:2.3 GJ 1234 the HabCat database. 3.8:10.8:2.4 Gray lines link each star with its two closest neighbors. 1.7 24 Iota Pegasi 1.4:10.6:-4.8 Green lines link habitable stars with their two 2.5 NN 4122 closest habitable neighbors. 4.3:10.5:0.8 Gl 4 B Links are labeled with their distance in parsecs. -4.7:10.3:-3.3 1.5 GJ 1288 0.3 -2.9:10.2:-6.1 1.5 Winchell Chung: Nyrath the nearly wise 1.2 Gl 4 10.0 http://www.projectrho.com/starmap.html 1.2 -4.6:10.0:-3.2 1.0 Gl 851 GJ 1223 2.0:9.7:-5.8 0.9 4.8:9.7:5.1 GJ 1004 GJ 1238 NN 4048 1.7 Gl 766 NN 4070 -4.8:9.6:-2.3 -3.0:9.6:4.5 4.2:9.6:4.42.0 4.9:9.6:0.2 5.3:9.6:3.1 2.8 1.0 3.0 Gl 671 0.4 1.8 3.9 4.0:9.4:6.9 2.4 Gl 909 BD+38°3095 3.7 -5.1:9.2:2.4 3.2 4.2:9.2:4.5 GJ 1253 -0.6:9.1:1.9 0.9 Gl 82 1.9 Gl 47 9.0 -8.0:9.0:-0.7 -6.1:9.0:-0.3 1.8 1.6 1.7 2.8 3.3 3.2 4.8 1.5 1.2 1.2 4.8 GJ 1053 NN 3992 -7.9:8.7:2.8 0.8 1.7 3.5 4.5:8.7:6.9 V 547 Cassiopeiae GJ 1206 -5.2:8.6:0.8 0.2:8.6:6.9 2.9 Gl 63 -7.0:8.5:-1.0 1.1 2.0 1.8 1.8 1.7 1.7 BD+61°195 NN 4247 3.4 GJ 1235 0.9 GJ 1232 -5.7:8.3:-0.1 3.1 1.0:8.3:-3.2 5.8:8.3:0.5 6.7:8.3:0.7 Hip 109119 GJ
    [Show full text]
  • The CARMENES Search for Exoplanets Around M Dwarfs Two Terrestrial Planets Orbiting G 264–012 and One Terrestrial Planet Orbiting Gl 393?
    Astronomy & Astrophysics manuscript no. Amado ©ESO 2021 May 31, 2021 The CARMENES search for exoplanets around M dwarfs Two terrestrial planets orbiting G 264–012 and one terrestrial planet orbiting Gl 393? P.J. Amado1, F. F. Bauer1, C. Rodríguez López1, E. Rodríguez1, C. Cardona Guillén2; 3, M. Perger6; 7, J. A. Caballero4, M. J. López-González1, I. Muñoz Rodríguez5, F. J. Pozuelos8; 25, A. Sánchez-Rivero1, M. Schlecker9, A. Quirrenbach10, I. Ribas6; 7, A. Reiners11, J. Almenara12, N. Astudillo-Defru13, M. Azzaro14, V.J. S. Béjar2; 3, R. Bohemann11, X. Bonfils12, F. Bouchy15, C. Cifuentes4, M. Cortés-Contreras4, X. Delfosse12, S. Dreizler11, T. Forveille12, A. P. Hatzes16, Th. Henning9, S. V. Jeffers24, A. Kaminski10, M. Kürster9, M. Lafarga6; 7, N. Lodieu2; 3, C. Lovis15, M. Mayor15, D. Montes17, J. C. Morales6; 7, N. Morales1, F. Murgas2; 3, J.L. Ortiz1, F. Pepe15, V. Perdelwitz18; 21, D. Pollaco19, N. C. Santos20; 22, P. Schöfer11, A. Schweitzer21, N. C. Ségransan15, Y. Shan11, S. Stock10, L. Tal-Or18; 11, S. Udry15, M. R. Zapatero Osorio23, and M. Zechmeister11 (Affiliations can be found after the references) Received dd February 2021 / Accepted dd Month 2021 ABSTRACT +0:29 We report the discovery of two planetary systems, namely G 264–012, an M4.0 dwarf with two terrestrial planets (Mb sin i = 2:50−0:30 M⊕ and +0:48 Mc sin i = 3:75−0:47 M⊕), and Gl 393, a bright M2.0 dwarf with one terrestrial planet (Mb sin i = 1:71 ± 0:24 M⊕). Although both stars were proposed to belong to young stellar kinematic groups, we estimate their ages to be older than about 700 Ma.
    [Show full text]
  • Arxiv:1904.03231V1 [Astro-Ph.SR] 5 Apr 2019 Key Words
    Astronomy & Astrophysics manuscript no. paper c ESO 2019 April 9, 2019 The CARMENES search for exoplanets around M dwarfs? Different roads to radii and masses of the target stars A. Schweitzer1, V. M. Passegger1, C. Cifuentes2;3, V. J. S. Béjar4, M. Cortés-Contreras2, J. A. Caballero2, C. del Burgo5, S. Czesla1, M. Kürster6, D. Montes3, M. R. Zapatero Osorio7, I. Ribas8; 9, A. Reiners10, A. Quirrenbach11, P. J. Amado12, J. Aceituno12; 13, G. Anglada-Escudé12; 14, F. F. Bauer12, S. Dreizler10, S. V. Jeffers10, E. W. Guenther15, T. Henning6, A. Kaminski11, M. Lafarga8; 9, E. Marfil3, J. C. Morales8; 9, J. H. M. M. Schmitt1, W. Seifert11, E. Solano2, H. M. Tabernero7; 3, and M. Zechmeister10 1 Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany, e-mail: [email protected] 2 Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC Campus, Camino Bajo del Castillo s/n, E-28691 Villanueva de la Cañada, Madrid, Spain 3 Departamento de Física de la Tierra y Astrofísica and UPARCOS-UCM (Unidad de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain 4 Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain, and Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 5 Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla, Mexico 6 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany 7
    [Show full text]
  • CARMENES Input Catalogue of M Dwarfs II. High-Resolution Imaging
    Astronomy & Astrophysics manuscript no. FC23 c ESO 2016 August 30, 2016 CARMENES input catalogue of M dwarfs II. High-resolution imaging with FastCam M. Cort´es-Contreras1 , V.J. S. B´ejar2, J. A. Caballero3,4, B. Gauza2, D. Montes1, F. J. Alonso-Floriano1, S. V. Jeffers5, J. C. Morales6, A. Reiners5, I. Ribas6, P. Sch¨ofer5, A. Quirrenbach4, P.J. Amado7, R. Mundt8, and W. Seifert4 1 Departamento de Astrof´ısica y Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas, Universidad Complutense de Madrid, 28040 Madrid, Spain, e-mail: [email protected] 2 Instituto de Astrof´ısica de Canarias, V´ıa L´actea s/n, 38205 La Laguna, Tenerife, Spain, and Departamento de Astrof´ısica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain 3 Centro de Astrobiolog´ıa (CSIC-INTA), PO Box 78, 28691 Villanueva de la Ca˜nada, Madrid, Spain 4 Landessternwarte, Zentrum f¨ur Astronomie der Universit¨at Heidelberg, K¨onigstuhl 12, 69117 Heidelberg, Germany 5 Institut f¨ur Astrophysik, Friedrich-Hund-Platz 1, 37077 G¨ottingen, Germany 6 Institut de Ci`ences de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Spain 7 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Glorieta de la Astronom´ıa s/n, 18008 Granada, Spain 8 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany Received 06 Jul 2016; accepted dd Aug 2016 ABSTRACT Aims. We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey.
    [Show full text]