Characterization of the Stellar / Substellar Boundary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CARMENES Input Catalogue of M Dwarfs IV. New Rotation Periods from Photometric Time Series
Astronomy & Astrophysics manuscript no. pk30 c ESO 2018 October 9, 2018 CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series E. D´ıezAlonso1;2;3, J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8;9, S. Vanaverbeke10;6, P. J. Amado11, V. J. S. B´ejar12;13, M. Cort´es-Contreras4, E. Herrero8;9, D. Hidalgo12;13;1, M. K¨urster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Sch¨ofer5, and L. Tal-Or5;16 1 Departamento de Astrof´ısicay Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas,Universidad Complutense de Madrid, E-280140 Madrid, Spain; e-mail: [email protected] 2 Departamento de Explotaci´ony Prospecci´onde Minas, Escuela de Minas, Energ´ıay Materiales, Universidad de Oviedo, E-33003 Oviedo, Asturias, Spain 3 Observatorio Astron´omicoCarda, Villaviciosa, Asturias, Spain (MPC Z76) 4 Centro de Astrobiolog´ıa(CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Ca~nada,Madrid, Spain 5 Institut f¨ur Astrophysik, Georg-August-Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, D-37077 G¨ottingen, Germany 6 AstroLAB IRIS, Provinciaal Domein \De Palingbeek", Verbrandemolenstraat 5, B-8902 Zillebeke, Ieper, Belgium 7 Observatorio Astron´omicoNaves, Cabrils, Barcelona, Spain (MPC 213) 8 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, E-08193 Bellaterra, Barcelona, Spain 9 Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain 10 -
Spektralanalyse Ausgewählter Carmenes Daten
Master’s Thesis Spektralanalyse ausgewählter Carmenes Daten Spectroscopic analysis of Carmenes sample prepared by Andre Lamert from Merkers at the Institut für Astrophysik, Göttingen Thesis period: 1st April 2014 until 10th September 2014 First referee: Dr. Sandra Jeffers Second referee: Prof. Dr. Ansgar Reiners Abstract In the last years the number of detected exoplanets increased rapidly. Upcoming projects like CARMENES, which is planned to find terrestrial planets in the hab- itable zone of M-dwarfs, will close the gap of Earth-mass planets in the exoplanet distribution. This thesis investigates the spectral type, radial velocity and magnetic activity of candidate M-dwarfs for the CARMENES project input catalog CARMENCITA.It focuses on the determination of spectral M-type stars. Based on calibration func- tions of the code THE HAMMER, different atomic and molecular lines and bands are used to calculate spectral indices. With the aim of increasing the determination accuracy, I have written an algorithm which uses only few, but very sensitive indices. These are particular dominant for M-type stars. Additionally, the Hα line is used to determine the magnetic activity. To determine the spectral type, the radial velocity and an activity indicator I use 900 high-resolution spectra taken from 364 different stars of the input catalog. 348 of these spectra were provided as raw data from the CAFE spectrograph. I use the IDL-Package REDUCE for reduction and add a new flux extraction procedure and a modified order definition procedure to increase the extracted wavelength range and the quality of the extracted flux values. The writ- ten fast working spectral typing algorithm calculates quite accurate spectral types for high-resolution spectra, since the results of this typing confirm former results collected in CARMENCITA using low-resolution spectroscopy. -
Curriculum Vitae - 24 March 2020
Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution -
Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year. -
Open Jhdebesthesis.Pdf
The Pennsylvania State University The Graduate School Department of Astronomy and Astrophysics DIGGING FOR SUBSTELLAR OBJECTS IN THE STELLAR GRAVEYARD A Thesis in Astronomy and Astrophysics by John H. Debes, IV c 2005 John H. Debes, IV Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2005 We approve* the thesis of John H. Debes, IV. Steinn Sigurdsson Associate Professor of Astronomy and Astrophysics Thesis Adviser Co-Chair of Committee Michael Eracleous Associate Professor of Astronomy and Astrophysics Co-Chair of Committee James Kasting Professor of Geosciences Alexander Wolszczan Evan Pugh Professor of Astronomy and Astrophysics Lawrence Ramsey Professor of Astronomy and Astrophysics Head of the Department of Astronomy and Astrophysics *Signatures are on file in the Graduate School iii Abstract White dwarfs, the endpoint of stellar evolution for stars with with mass < 8 M , possess several attributes favorable for studying planet and brown dwarf formation around stars with primordial masses > 1 M . This thesis explores the consequences of post-main-sequence evolution on the dynamics of a planetary system and the observa- tional signatures that arise from such evolution. These signatures are then specifically tested with a direct imaging survey of nearby white dwarfs. Finally, new techniques for high contrast imaging are discussed and placed in the context of further searches for planets and brown dwarfs in the stellar graveyard. While planets closer than 5 AU will most likely not survive the post-main ∼ sequence evolution of its parent star, any planet with semimajor axis > 5 AU will survive, and its semimajor axis will increase as the central star loses mass. -
HOW to CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, and RADIUS Andrew W
The Astrophysical Journal, 804:64 (38pp), 2015 May 1 doi:10.1088/0004-637X/804/1/64 © 2015. The American Astronomical Society. All rights reserved. HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS Andrew W. Mann1,2,8,9, Gregory A. Feiden3, Eric Gaidos4,5,10, Tabetha Boyajian6, and Kaspar von Braun7 1 University of Texas at Austin, USA; [email protected] 2 Institute for Astrophysical Research, Boston University, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden 4 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA 5 Max Planck Institut für Astronomie, Heidelberg, Germany 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, USA Received 2015 January 6; accepted 2015 February 26; published 2015 May 4 ABSTRACT Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan–Boltzmann law to determine radii of 183 nearby K7–M7 single stars with a precision of 2%–5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff–radius relation depends strongly on [Fe/H],as predicted by theory. -
Issue 36, June 2008
June2008 June2008 In This Issue: 7 Supernova Birth Seen in Real Time Alicia Soderberg & Edo Berger 23 Arp299 With LGS AO Damien Gratadour & Jean-René Roy 46 Aspen Instrument Update Joseph Jensen On the Cover: NGC 2770, home to Supernova 2008D (see story starting on page 7 Engaging Our Host of this issue, and image 52 above showing location Communities of supernova). Image Stephen J. O’Meara, Janice Harvey, was obtained with the Gemini Multi-Object & Maria Antonieta García Spectrograph (GMOS) on Gemini North. 2 Gemini Observatory www.gemini.edu GeminiFocus Director’s Message 4 Doug Simons 11 Intermediate-Mass Black Hole in Gemini South at moonset, April 2008 Omega Centauri Eva Noyola Collisions of 15 Planetary Embryos Earthquake Readiness Joseph Rhee 49 Workshop Michael Sheehan 19 Taking the Measure of a Black Hole 58 Polly Roth Andrea Prestwich Staff Profile Peter Michaud 28 To Coldly Go Where No Brown Dwarf 62 Rodrigo Carrasco Has Gone Before Staff Profile Étienne Artigau & Philippe Delorme David Tytell Recent 31 66 Photo Journal Science Highlights North & South Jean-René Roy & R. Scott Fisher Photographs by Gemini Staff: • Étienne Artigau NICI Update • Kirk Pu‘uohau-Pummill 37 Tom Hayward GNIRS Update 39 Joseph Jensen & Scot Kleinman FLAMINGOS-2 Update Managing Editor, Peter Michaud 42 Stephen Eikenberry Science Editor, R. Scott Fisher MCAO System Status Associate Editor, Carolyn Collins Petersen 44 Maxime Boccas & François Rigaut Designer, Kirk Pu‘uohau-Pummill 3 Gemini Observatory www.gemini.edu June2008 by Doug Simons Director, Gemini Observatory Director’s Message Figure 1. any organizations (Gemini Observatory 100 The year-end task included) have extremely dedicated and hard- completion statistics 90 working staff members striving to achieve a across the entire M 80 0-49% Done observatory are worthwhile goal. -
Discovery of a Substellar Companion to the K2 III Giant É© Draconis
The Astrophysical Journal, 576:478–484, 2002 September 1 E # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1 DISCOVERY OF A SUBSTELLAR COMPANION TO THE K2 III GIANT i DRACONIS Sabine Frink, David S. Mitchell, and Andreas Quirrenbach Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424; [email protected], [email protected], [email protected] Debra A. Fischer and Geoffrey W. Marcy Department of Astronomy, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411; fi[email protected], [email protected] and R. Paul Butler Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305; [email protected] Received 2002 March 21; accepted 2002 May 8 ABSTRACT We report precise radial velocity measurements of the K giant i Dra (HD 137759, HR 5744, HIP 75458), carried out at Lick Observatory, which reveal the presence of a substellar companion orbiting the primary star. A Keplerian fit to the data yields an orbital period of about 536 days and an eccentricity of 0.70. Assum ing a mass of 1.05 M8 for i Dra, the mass function implies a minimum companion mass m2 sin i of 8.9 MJ, making it a planet candidate. The corresponding semimajor axis is 1.3 AU. The nondetection of the orbital motion by Hipparcos allows us to place an upper limit of 45 MJ on the companion mass, establishing the sub- stellar nature of the object. -
A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3]. -
Brown Dwarfs: at Last Filling the Gap Between Stars and Planets
Perspective Brown dwarfs: At last filling the gap between stars and planets Ben Zuckerman* Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 Until the mid-1990s a person could not point to any celestial object and say with assurance known (refs. 5–9), the vast majority of that ‘‘here is a brown dwarf.’’ Now dozens are known, and the study of brown dwarfs has brown dwarfs are freely floating among come of age, touching upon major issues in astrophysics, including the nature of dark the stars (2–4). Indeed, the contrast be- matter, the properties of substellar objects, and the origin of binary stars and planetary tween the scarcity of companion brown systems. dwarfs and the plentitude of free floaters was totally unexpected; this dichotomy Stars, Brown Dwarfs, and Dark Matter superplanet from a brown dwarf, such as now constitutes a major unsolved problem in stellar physics (see below). lanets (Greek ‘‘wanderers’’) and stars how they formed, so that the dividing line Surveys for free floaters, both within have been known for millennia, but need not necessarily fall at 13 Jovian P ϳ100 light years of the Sun and in (more the physics underlying their differences masses. distant) clusters such as the Pleiades (The became understood only during the 20th Low-mass stars spend a lot of time, tens Seven Sisters), are still in their early century. Stars fuse protons into helium of billions to trillions of years, fusing pro- stages. But the picture is becoming clear. nuclei in their hot interiors and planets do tons into helium on the so-called ‘‘main Currently, it is estimated that there are not. -
Public Naming of Exoplanets and Their Stars: Implementation and Outcomes of the IAU100
Public Naming of Exoplanets and Their Stars: Implementation and Outcomes of the IAU100 Best Practice Best NameExoWorlds Global Project Eric Mamajek Debra Meloy Elmegreen Alain Lecavelier des Etangs Jet Propulsion Laboratory, California Vassar College Institut d’Astrophysique de Paris Institute of Technology [email protected] [email protected] [email protected] Eduardo Monfardini Penteado Lars Lindberg Christensen [email protected] NSF’s NOIRLab [email protected] Gareth Williams [email protected] Hitoshi Yamaoka National Astronomical Observatory of Guillem Anglada-Escudé Japan (NAOJ) Institute for Space Science (ICE/CSIC), [email protected] Queen Mary University of London Keywords [email protected] exoplanets, IAU nomenclature The IAU100 NameExoWorlds public naming campaign was a core project during the International Astronomical Union’s 100th anniversary (IAU100) in 2019, giving the opportunity to everyone, everywhere, to propose official names for exoplanets and their host stars. With IAU100 NameExoWorlds the IAU encouraged all peoples of Earth to consider themselves as “Citizens of the Universe”, united “under one sky”. The 113 national campaigns involved hundreds of thousands of people in a global effort to bring the public closer to science by allowing them to participate in the process of naming stars and planets, and learning more about astronomy in the process. The campaign resulted in nearly 425 000 votes, and 113 new IAU-recognised proper names for exoplanets and 113 new names for their stars. The IAU now officially recognises the chosen proper names in addition to their previous scientific designations, and they appear in popular databases. Introduction wished to contribute to the fraternity of all through international cooperation, the IAU people with a significant token of global is the authority responsible for assigning Over the past three decades, astronomers identity. -
3-D Starmap 15.0 All Stars Within 15 Parsecs (50 Light-Years) of Sol
3-D Starmap 15.0 All stars within 15 parsecs (50 light-years) of Sol. Gl 815 2.0:14.9:-1.0 All units are in parsecs. (1 parsec = 3.26 light-years) 1.5 Gl 792 Stars are plotted in cartesian x,y,z coordinates. 3.2:14.7:-0.2 X-Y plane is the plane of the galaxy. Alderamin 2.3 -2.8:14.5:2.4 +x is Coreward, -x is Rimward, NN 4276 -3.9:14.4:0.4 +y is Spinward, -y is Trailing 1.2 Star data is from HYG database. 3.2 Stars circled in green are likely to host 14.0 human-habitable planets, according to 3 Eta Cephei 1.3 -1.9:13.9:2.9 the HabCat database. Gray lines link each star with its two closest neighbors. 2.9 3.0 Green lines link habitable stars with their two Hip 101516 5.7:13.5:-2.3 closest habitable neighbors. NN 4338 B GJ 1228 -4.1:13.4:-4.8 3.0 1.5:13.4:6.2 Gl 878 2.6 GJ 1270 0.4 Links are labeled with their distance in parsecs. -4.6:13.3:0.3 -1.5:13.3:-3.3 3.1 2.6 Gl 794 NN 4109 Winchell Chung: Nyrath the nearly wise 5.5:13.1:-2.3 2.0 7.0:13.1:1.5 http://www.projectrho.com/starmap.html 13.0 Gl 738 2.3 6.5:13.0:3.4 Gl 875.1 1.9 -1.2:12.9:-5.9 2.2 1.5 1.6 2.2 2.7 NN 4073 4.6:12.6:4.5 Gl 14 -6.1:12.5:-5.5 Gl 52 2.6 Gl 806 -28..6:12.4:0.3 1.3:12.4:0.2 4.4 3.8 NN 3069 BD+27°4120 2.6 Gl 813 BD+31°3767 -8.5:12.3:-2.3 2.4:12.3:-4.1 4.9:12.3:-3.55.1:12.3:0.8 BD+57°2735 -4.8:12.2:-0.7 19 Draconis -1.2:12.1:9.0 1.7 12.0 2.1 1.3 Gl 742 26 Draconis NN 4228 3.0 -2.4:11.9:5.6 -0.2:11.9:7.6 4.3:11.6.9:-7.4 1.1 2.5 3.8 1.7 2.4 1.9 35 Gamma Cephei GJ 1243 2.1 2.9 -6.4:11.6:3.6 1.9:11.6:2.1 NN 3117 2.3 NN 4040 2.8 -9.5:11.5:0.6 1.9 2.1 4.1 3.4:11.5:6.4