Module 3: Soil

Total Page:16

File Type:pdf, Size:1020Kb

Module 3: Soil Module 3: Soil Topics addressed in this module include: introducing soil, identifying soil as distinct from dirt, identifying the various types of soils and soil horizons, and understanding soil formation and the nutrient cycle. Updated Oct. 29, 2019 TREE: Module 3: Soil Page 2 Table of Contents Section 3.1: Soil 101 .......................................................................................................................3 What is Soil? .......................................................................................................................................................... 4 How is Soil Different from Dirt? ............................................................................................................................. 5 How Does Soil Form? ............................................................................................................................................. 5 What Factors Influence Soil Formation? ............................................................................................................... 6 Are All Soils the Same? .......................................................................................................................................... 8 Section 3.2: Soil Horizons .............................................................................................................. 10 What is a Soil Profile? .......................................................................................................................................... 11 What is a Soil Horizon? ........................................................................................................................................ 11 How do Soil Horizons Form? ................................................................................................................................ 12 How do Soil Profiles Compare Across Canada? ................................................................................................... 13 Labelling Soil Horizons ......................................................................................................................................... 14 While Sampling .................................................................................................................................................... 15 Section 3.3 The Nutrient Web ....................................................................................................... 17 What is the Nutrient Web? .................................................................................................................................. 18 How Does the Nutrient Web Work? .................................................................................................................... 18 What Factors Influence the Nutrient Web? ........................................................................................................ 20 Glossary ....................................................................................................................................... 28 TREE: Module 3: Soil Page 3 Section 3.1: Soil 101 Original image by Mesaytesegaye TREE: Module 3: Soil Page 4 Section Overview Outcomes Students will: • Describe what soil consists of and its four main functions. • Investigate factors and processes that influence soil formation (i.e. addition, removal, transfer, and transformation). • Differentiate soils based on their characteristics (i.e. texture, structure, porosity, and colour). Key Terms Acid Rain Dirt Parent Material Texture Acidification Eluviation Pedosphere Topography Addition Erosion pH Transfer Bioavailable Groundwater Porosity Transformation Climate Humans Removal Water Table Colloids Leaching Solutes Weathering Colour Organisms Structure What is Soil? To most, soil is just the ground beneath our feet, but soil is a complex mixture of minerals, organic matter, and organisms. With the TREE program, you will need to provide samples of soil near the trembling aspen you are sampling from. Soil is collected because it helps correlate data from the tree cores because as we know, soil is composed of many nutrients and minerals that find their way into the tree. By analyzing the soil, we are able to potentially make these connections and see the impact the environment has on the tree. Soil contains the three common states of matter: solid, liquid, and gas. Roughly 50% of soil is solid and is composed of minerals (~45%) and organic matter (~5%). Soil is porous though which allows for water and gases to seep through (see Figure 1). Figure 1 shows the pores or spacing between sand grains. Image by klaber. TREE: Module 3: Soil Page 5 Soil has four main functions. It acts as a medium for plant growth. It also stores and filters water. It modifies the atmosphere by emitting and absorbing various gases and dust and finally, soil is also a habitat for countless organisms. These functions continuously alter the composition and structure of soil. All of the soil on Earth is collectively called the pedosphere. As outlined in Figure 2, the pedosphere connects to the four other spheres: the lithosphere (Earth’s crust and upper mantle), the hydrosphere (Earth’s water and ice), the atmosphere (Earth’s Figure 2 shows the interconnectedness of Earths many spheres. gases), and the biosphere (Earth’s living creatures). Original image by Jojndon. How is Soil Different from Dirt? The terms soil and dirt are used interchangeably but they are, in fact, different and should be used separately. Dirt is distinct from soil in that dirt is soil that has been displaced from its native environment in a way that is unusable. Dirt is incapable of supporting plant growth, so it is sometimes referred to as dead soil. You can identify dirt from soil by adding water to it. If the mixture compacts well together, it is soil. If the mixture does not pack together, then it is most likely dirt. How Does Soil Form? Soil formation, or pedogenesis, happens through a variety of complex processes but simply put, it is formed by the breakdown and movement of rocks and sediments called parent material. The processes impacting the parent material can be simplified to just their effects: addition, removal, transfer, and transformation. Addition ● This effect refers to adding material into soil. Anything or anyone can add material to soil. For example, adding compost from your kitchen or through weathering of larger rocks will impact soil formation (Figure 3). Removal ● With removal, this effect takes material out of soil. Anything can remove material from soil, such as simply digging a hole in the ground, or through erosion from wind or water. Figure 3 shows weathering and erosion of a boulder. Image by UCL Mathematical & Physical Sciences. Transfer ● In this process, soil materials are moved between locations. Anything can transfer material between locations, such as simply tilling the ground or through leaching and eluviation of minerals (Figure 4). Transformation ● Transformation refers to altering the chemical composition of soil materials. Many things can cause soil materials to change their chemical composition, such as simply adding fertilizer to the soil or through acidification from acid rain. Figure 4 shows iron leaching out from a stone wall. Image by Ashley Van Haeften. TREE: Module 3: Soil Page 6 Examples of Soil Forming Processes ● Weathering is the breakdown of soil, rocks, minerals, wood, and man-made materials through contact with wind, water, ice, and organisms. Products of weathering remain in the same place. ● Erosion is the breakdown and movement of soil, rocks, minerals, wood, and man-made materials by wind, water, ice, gravity, and organisms. Products of erosion do not remain in the same place. ● Leaching is the loss of dissolved material due to flowing water. ● Eluviation is the loss of solid material due to floating on flowing water. ● Acidification is the build-up of hydrogen in the soil, decreasing the pH or the measure of the acidity of a solution. This build up can be from adding in acidic materials or solutions, or removing basic ones. What Factors Influence Soil Formation? Soil is the product of parent material, climate, organisms, topography, groundwater, and humans all interacting with each other. Most importantly, soil is the product of time. Parent material refers to the rocks and sediments that are broken down to form soil (see Figure 5). • The composition and structure of soil is highly dependent on the composition of the parent material. Iron rich parent material will produce iron rich soil. o The rate at which soil forms is also dependent on the parent material. Easily weathered parent material will produce soil faster than stronger, more resistant material. Figure 5 shows layers of parent sediment. Image by Figure 6 shows a pothole full of water. Image by Matt RF TheusiNo. Webb. The climate refers to the long-term trend in weather. • The rate at which soil forms is dependent on the local climate. • Climates with a trend for rain will experience rock and soil erosion which will create and relocate soil faster than soil in dry climates. Climates with a trend for freezing and thawing will experience rock and soil weathering, creating soil faster than soil in climates without the freezing and thawing. • The effects of freezing and thawing can be seen every spring when potholes on the road start to appear. As shown in Figure 6, potholes are due, in part, to spring melt-water making its way into road cracks during the day, where the
Recommended publications
  • Engineering Behavior and Classification of Lateritic Soils in Relation to Soil Genesis Erdil Riza Tuncer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Engineering behavior and classification of lateritic soils in relation to soil genesis Erdil Riza Tuncer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons Recommended Citation Tuncer, Erdil Riza, "Engineering behavior and classification of lateritic soils in relation to soil genesis " (1976). Retrospective Theses and Dissertations. 5712. https://lib.dr.iastate.edu/rtd/5712 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Basic Soil Science W
    Basic Soil Science W. Lee Daniels See http://pubs.ext.vt.edu/430/430-350/430-350_pdf.pdf for more information on basic soils! [email protected]; 540-231-7175 http://www.cses.vt.edu/revegetation/ Well weathered A Horizon -- Topsoil (red, clayey) soil from the Piedmont of Virginia. This soil has formed from B Horizon - Subsoil long term weathering of granite into soil like materials. C Horizon (deeper) Native Forest Soil Leaf litter and roots (> 5 T/Ac/year are “bio- processed” to form humus, which is the dark black material seen in this topsoil layer. In the process, nutrients and energy are released to plant uptake and the higher food chain. These are the “natural soil cycles” that we attempt to manage today. Soil Profiles Soil profiles are two-dimensional slices or exposures of soils like we can view from a road cut or a soil pit. Soil profiles reveal soil horizons, which are fundamental genetic layers, weathered into underlying parent materials, in response to leaching and organic matter decomposition. Fig. 1.12 -- Soils develop horizons due to the combined process of (1) organic matter deposition and decomposition and (2) illuviation of clays, oxides and other mobile compounds downward with the wetting front. In moist environments (e.g. Virginia) free salts (Cl and SO4 ) are leached completely out of the profile, but they accumulate in desert soils. Master Horizons O A • O horizon E • A horizon • E horizon B • B horizon • C horizon C • R horizon R Master Horizons • O horizon o predominantly organic matter (litter and humus) • A horizon o organic carbon accumulation, some removal of clay • E horizon o zone of maximum removal (loss of OC, Fe, Mn, Al, clay…) • B horizon o forms below O, A, and E horizons o zone of maximum accumulation (clay, Fe, Al, CaC03, salts…) o most developed part of subsoil (structure, texture, color) o < 50% rock structure or thin bedding from water deposition Master Horizons • C horizon o little or no pedogenic alteration o unconsolidated parent material or soft bedrock o < 50% soil structure • R horizon o hard, continuous bedrock A vs.
    [Show full text]
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan
    PS&C Prairie Soils & Crops Journal Agricultural Soils of the Prairies Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan Summary Gleysolic and Organic soils are collectively referred to as “wetland soils”. They are found in wet low-lying or level landscape positions. Gleysolic soils are found throughout the agricultural Prairies, in association with Chernozemic and Luvisolic soils. In semi-arid regions, they are frequently tilled in dry years and can be very productive due to their relatively high levels of soil moisture and nutrients. In the Prairie Provinces, Organic soils tend to be mostly associated with the Boreal transition zones at the northern and eastern perimeter of the Prairies. With proper management, these can also provide productive agricultural land, particularly for forages. Introduction Soils of the Gleysolic and Organic orders are collectively referred to as “wetland soils”. Soil maps of the agricultural region of the Canadian Prairies seldom have areas mapped as dominantly Gleysolic8 or Organic9; however, these soils are found throughout the region wherever climate and/or topography have led to persistent water-saturated conditions. Gleysols are mineral soils with colors that reflect intermittent or prolonged anaerobic (i.e., saturated, low oxygen) conditions (Fig. 1A). Organic soils reflect permanent anaerobic conditions, which lead to soils that are made up of variably decomposed plant residues, mostly from water-tolerant (i.e., hydrophytic) vegetation (Fig. 1B). Figure 1: A) Humic Luvic Gleysol, Saskatchewan and B) Typic Fibrisol (Organic), Manitoba7. Of the some 100,000,000 ha covered by the Canada Land Inventory (CLI) in the Prairie Provinces12, Gleysolic soils occupy less than 15% of the Prairie ecoregions and up to 40% in the Mid-Boreal (boreal = “northern”) Upland (Alberta) and Interlake Plain (Manitoba) ecoregions12.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Correlation Between the Polish Soil Classification (2011) and International Soil Classification System World Reference Base for Soil Resources (2015)
    DE DE GRUYTER 88 OPEN CEZARY KABA£A, MARCIN ŒWITONIAK, PRZEMYS£AW CHARZYÑSKI SOIL SCIENCE ANNUAL DOI: 10.1515/ssa-2016-0012 Vol. 67 No. 2/2016: 88–100 CEZARY KABA£A1*, MARCIN ŒWITONIAK2, PRZEMYS£AW CHARZYÑSKI2 1 Wroc³aw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection Grunwaldzka 53, 50-357 Wroc³aw, Poland 2 Nicolaus Copernicus University, Department of Soil Science and Landscape Management Lwowska 1, 87-100 Toruñ, Poland Correlation between the Polish Soil Classification (2011) and international soil classification system World Reference Base for Soil Resources (2015) Abstract: The recent editions of the Polish Soil Classification (PSC) have supplied the correlation table with the World Reference Base for Soil Resources (WRB), which is the international soil classification most commonly used by Polish pedologists. However, the latest WRB edition (IUSS Working Group WRB 2015) has introduced significant changes and many of the former correlations became outdated. The current paper presents the closest equivalents of the soil orders, types and subtypes of the recent edition of the PSC (2011) and WRB (IUSS Working Group WRB 2015). The proposals can be used for general correlation of soil units on maps and in databases, and may support Polish soil scientists to establish the most appropriate equivalents for soils under study, as well as make PSC more available for an international society. Keywords: Polish Soils Classification, WRB, equivalents, reference soil groups, soil types INTRODUCTION quantitative concept. Presently, the Soil Taxonomy is used in over 40 countries (Krasilnikov 2002) as a Pedology appeared in the second half of the 19th primary system for naming the soils.
    [Show full text]
  • Soils and Soil-Forming Material Technical Information Note 04 /2017 30Th November 2017
    Soils and Soil-forming Material Technical Information Note 04 /2017 30th November 2017 Contents 1. Introduction to Soils ........................................................................................................................ 2 2. Components and Properties of Soil ................................................................................................ 7 3. Describing and Categorising soils .................................................................................................. 29 4. Policy, Regulation and Roles ......................................................................................................... 34 5. Soil Surveys, Handling and Management ..................................................................................... 40 6. Recommended Soil Specifications ................................................................................................ 42 7. References .................................................................................................................................... 52 “Upon this handful of soil our survival depends. Husband it and it will grow our food, our fuel, and our shelter and surround us with beauty. Abuse it and the soil will collapse and die, taking humanity with it.” From Vedas Sanskrit Scripture – circa 1500 BC The aim of this Technical Information Note is to assist Landscape Professionals (primarily landscape architects) when considering matters in relation to soils and soil-forming material. Soil is an essential requirement for providing
    [Show full text]
  • Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
    Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere.
    [Show full text]
  • Unit 2.3, Soil Biology and Ecology
    2.3 Soil Biology and Ecology Introduction 85 Lecture 1: Soil Biology and Ecology 87 Demonstration 1: Organic Matter Decomposition in Litter Bags Instructor’s Demonstration Outline 101 Step-by-Step Instructions for Students 103 Demonstration 2: Soil Respiration Instructor’s Demonstration Outline 105 Step-by-Step Instructions for Students 107 Demonstration 3: Assessing Earthworm Populations as Indicators of Soil Quality Instructor’s Demonstration Outline 111 Step-by-Step Instructions for Students 113 Demonstration 4: Soil Arthropods Instructor’s Demonstration Outline 115 Assessment Questions and Key 117 Resources 119 Appendices 1. Major Organic Components of Typical Decomposer 121 Food Sources 2. Litter Bag Data Sheet 122 3. Litter Bag Data Sheet Example 123 4. Soil Respiration Data Sheet 124 5. Earthworm Data Sheet 125 6. Arthropod Data Sheet 126 Part 2 – 84 | Unit 2.3 Soil Biology & Ecology Introduction: Soil Biology & Ecology UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURE (1 LECTURE, 1.5 HOURS) biological properties and ecosystem The lecture covers the basic biology and ecosystem pro- processes of agricultural soils. cesses of soils, focusing on ways to improve soil quality for organic farming and gardening systems. The lecture reviews the constituents of soils > DEMONSTRATION 1: ORGANIC MATTER DECOMPOSITION and the physical characteristics and soil (1.5 HOURS) ecosystem processes that can be managed to In Demonstration 1, students will learn how to assess the improve soil quality. Demonstrations and capacity of different soils to decompose organic matter. exercises introduce students to techniques Discussion questions ask students to reflect on what envi- used to assess the biological properties of ronmental and management factors might have influenced soils.
    [Show full text]
  • Soil Chemistry Factors Confounding Crop Salinity Tolerance—A Review
    agronomy Review Soil Chemistry Factors Confounding Crop Salinity Tolerance—A Review Pichu Rengasamy School of Agriculture, Food and Wine, Prescott Building, Waite Campus, The University of Adelaide, Adelaide, 5005 SA, Australia; [email protected] Academic Editor: Matthew Gilliham Received: 26 August 2016; Accepted: 25 October 2016; Published: 29 October 2016 Abstract: The yield response of various crops to salinity under field conditions is affected by soil processes and environmental conditions. The composition of dissolved ions depend on soil chemical processes such as cation or anion exchange, oxidation-reduction reactions, ion adsorption, chemical speciation, complex formation, mineral weathering, solubility, and precipitation. The nature of cations and anions determine soil pH, which in turn affects crop growth. While the ionic composition of soil solution determine the osmotic and ion specific effects on crops, the exchangeable ions indirectly affect the crop growth by influencing soil strength, water and air movement, waterlogging, and soil crusting. This review mainly focuses on the soil chemistry processes that frustrate crop salinity tolerance which partly explain the poor results under field conditions of salt tolerant genotypes selected in the laboratory. Keywords: soil chemistry; saline soils; dispersive soils; soil physical conditions 1. Introduction The aqueous components of a soil at different water contents in the field determine the abiotic stress experienced by plants during their growth, consequently affecting the crop yield [1]. In salt-affected soils, the total concentration of dissolved salts in soil solutions, generally measured as the electrical conductivity (EC) of the soil solutions, is considered as the primary criterion affecting the yield (e.g., [2]).
    [Show full text]
  • Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis C
    Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis C. Laveuf, Sophie Cornu, Denis Baize, Michel Hardy, Olivier Josière, Sylvain Drouin, Ary Bruand, F. Juillot To cite this version: C. Laveuf, Sophie Cornu, Denis Baize, Michel Hardy, Olivier Josière, et al.. Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis. Pedosphere, Elsevier, 2009, 19 (3), pp.292-304. 10.1016/S1002-0160(09)60120-X. insu-00403877 HAL Id: insu-00403877 https://hal-insu.archives-ouvertes.fr/insu-00403877 Submitted on 21 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis∗1 C. LAVEUF1,∗2,S.CORNU1, D. BAIZE1, M. HARDY1, O. JOSIERE1, S. DROUIN2, A. BRUAND2 and F. JUILLOT3 1INRA, UR0272 Science du Sol, Centre de recherche d’Orl´eans, 45075 Orl´eans cedex 2 (France) 2ISTO, UMR 6113, CNRS, Universit´ed’Orl´eans, 45071 Orl´eans cedex 2 (France) 3IMPMC, UMR CNRS 7590, Universit´e Paris 6 et 7, IPGC, 75252 Paris cedex 05 (France) (Received November 20, 2008; revised March 23, 2009) ABSTRACT The long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations.
    [Show full text]
  • Promoting Advanced Analytical Tools in Soil Science for Food Security
    Promoting Advanced Analytical Tools in Soil Science for Food Security By USDA NC1187 Multi-state group1 Synopsis Many ecosystems are becoming increasingly stressed, and resources needed for agriculture, such as fertilizers and water, are becoming more costly to access and process. To produce enough food for the increasing population, we must get more food from already strained soil and water resources. One of the most promising ways to make significant technological breakthroughs in agricultural science is fundamental research on biological, physical, and chemical processes occurring in natural and managed ecosystems (Sposito, Reginato et al. 1992, Huang, Sparks et al. 1998, Augustine and Lane 2014)2,3. Historically, basic research has played critical roles in propelling agricultural revolutions, including the Haber-Bosch process responsible for producing nitrogen fertilizer needed to grow crops, and plant genetics and breeding that led to increased crop yields and disease resistance (Green Revolution). Breakthroughs are fueled by basic research. Thus, to meet future demands for food, energy and water, and maintain ecosystem services, it is imperative that we train more applied scientists to utilize cutting- edge molecular and microscopic tools in agricultural related research. Goal Most agricultural research is focused on applied trials to provide short-term solutions. However, long- term solutions requires basic research focusing on understanding fundamentals of processes governing innovations in food, energy and water science. To address the modern challenges of food production, and decrease use of water and energy resources, we propose that the NSF innovations in food, energy and water sciences (INFEWS) program create funding opportunities that promote the following objectives: Objective 1: Train soil and water scientist to use advanced molecular and microscopic tools.
    [Show full text]