Volume 14 2014

Total Page:16

File Type:pdf, Size:1020Kb

Volume 14 2014 FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University FORUM GEOM Volume 14 2014 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Nikolaos Dergiades Thessaloniki, Greece Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Li Zhou Winter Haven, Florida, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Martin Josefsson, Angle and circle characterizations of tangential quadrilaterals,1 Paris Pamfilos, The associated harmonic quadrilateral,15 Gregoire´ Nicollier, Dynamics of the nested triangles formed by the tops of the perpendicular bisectors,31 J. Marshall Unger, Kitta’s double-locked problem,43 Marie-Nicole Gras, Distances between the circumcenter of the extouch triangle and the classical centers of a triangle,51 Sander´ Kiss and Paul Yiu, The touchpoints triangles and the Feuerbach hyperbolas, 63 Benedetto Scimemi, Semi-similar complete quadrangles,87 Jose´ L. Ram´ırez, Inversions in an ellipse, 107 Bryan Brzycki, On a geometric locus in taxicab geometry, 117 Dao Thanh Oai, A simple proof of Gibert’s generalization of the Lester circle theorem, 123 Cristinel Mortici, A note on the Fermat-Torricelli point of a class of polygons, 127 Martin Josefsson, Properties of equidiagonal quadrilaterals, 129 Michal Rol´ınek and Le Anh Dung, The Miquel points, pseudocircumcenter, and Euler-Poncelet point of a complete quadrilateral , 145 Emmanuel Antonio Jose´ Garc´ıa, A note on reflections, 155 Nikolaos Dergiades, Antirhombi, 163 Bernard Gibert, Asymptotic directions of pivotal isocubics, 173 Bernard Gibert, The Cevian Simson transformation, 191 Dao Thanh Oai, Two pairs of Archimedean circles in the arbelos, 201 Gotthard Weise, On some triads of homothetic triangles, 203 Manfred Evers, Symbolic substitution has a geometric meaning, 217 Michael de Villiers, Quasi-circumcenters and a generalization of the quasi-Euler line to a hexagon, 233 Surajit Dutta, A simple property of isosceles triangles with applications, 237 Hiroshi Okumura, A note on Haga’s theorems in paper folding, 241 Nikolaos Dergiades, Dao’s theorem on six circumcenters associated with a cyclic hexagon, 243 Tran Quang Hung, Two tangent circles from jigsawing quadrangle, 247 Tran Quang Hung, Two more pairs of Archimedean circles in the arbelos, 249 Floor van Lamoen, A special point in the arbelos leading to a pair of Archimedean circles, 253 Paul Yiu, Three constructions of Archimedean circles in an arbelos, 255 Telv Cohl, A purely synthetic proof of Dao’s theorem on six circumcenters associated with a cyclic hexagon, 261 Jesus Torres, The triangle of reflections, 265 Paris Pamfilos, A gallery of conics with five elements, 295 Shao-Cheng Liu, On two triads of triangles associated with the perpendicular bisectors of the sides of a triangle, 349 Hiroshi Okumura, Archimedean circles related to the Schoch line, 369 Thierry Gensane and Pascal Honvault, Optimal packings of two ellipses in a square, 371 Martin Josefsson, The diagonal point triangle revisited, 381 Francisco Javier Garc´ıa Capitan,´ A simple construction of an inconic, 387 Albrecht Hess, On a circle containing the incenters of tangential quadrilaterals, 389 Mihaly´ Bencze and Ovidiu T. Pop, Congruent contiguous excircles, 397 Nguyen Thanh Dung, Some circles associated with the Feuerbach points, 403 Nikolaos Dergiades, Generalized Archimedean arbelos twins, 409 Author Index, 419 Forum Geometricorum b Volume 14 (2014) 1–13. b b FORUM GEOM ISSN 1534-1178 Angle and Circle Characterizations of Tangential Quadrilaterals Martin Josefsson Abstract. We prove five necessary and sufficient conditions for a convex quadri- lateral to have an incircle that concerns angles or circles. 1. Introduction A tangential quadrilateral is a convex quadrilateral with an incircle, i.e., a circle inside the quadrilateral that is tangent to all four sides. In [4] and [5] we reviewed and proved a total of 20 different necessary and sufficient conditions for a convex quadrilateral to be tangential. Of these there were 14 dealing with different dis- tances (sides, line segments, radii, altitudes), four were about circles (excluding their radii), and only two were about angles. In this paper we will prove five more such characterizations concerning angles and circles. First we review two that can be found elsewhere. A characterization involving the four angles and all four sides of a quadrilateral appeared as part of a proof of an inverse altitude characterization of tangential quadrilaterals in [6, p.115]. According to it, a convex quadrilateral ABCD with sides a = AB, b = BC, c = CD and d = DA is tangential if and only if a sin A sin B + c sin C sin D = b sin B sin C + d sin D sin A. In the extensive monograph [9, p.133] on quadrilateral geometry, the following characterization is attributed to Simionescu. A convex quadrilateral is tangential if and only if its consecutive sides a, b, c, d and diagonals p, q satisfies ac bd = pq cos θ | − | where θ is the acute angle between the diagonals. The proof is a simple application of the quite well known identity 2pq cos θ = b2 + d2 a2 c2 that holds in all − − convex quadrilaterals. Rewriting it as 2pq cos θ = (b + d)2 (a + c)2 + 2(ac bd) , − − we see that Simionescu’s theorem is equivalent to Pitot’s theorem a + c = b + d for tangential quadrilaterals. In Theorem 2 we will prove another characterization for the angle between the diagonals, but it only involves four different distances instead of six. Publication Date: January 23, 2014. Communicating Editor: Paul Yiu. 2 M. Josefsson 2. Angle characterizations of tangential quadrilaterals It is well known that a convex quadrilateral has an incircle if and only if the four angle bisectors of the internal vertex angles are concurrent. If this point exist, it is the incenter. Here we shall prove a necessary and sufficient condition for an incircle regarding the intersection of two opposite angle bisectors which characterize the incenter in terms of two angles in two different ways. To prove that one of these equalities holds in a tangential quadrilateral (the direct theorem) was a problem in [1, p.67]. Theorem 1. A convex quadrilateral ABCD is tangential if and only if ∠AIB + ∠CID = π = ∠AID + ∠BIC where I is the intersection of the angle bisectors at A and C. Proof. ( ) In a tangential quadrilateral the four angle bisectors intersect at the incenter.⇒ Using the sum of angles in a triangle and a quadrilateral, we have A B C D 2π ∠AIB + ∠CID = π + + π + = 2π = π. − 2 2 − 2 2 − 2 The second equality can be proved in the same way, or we can use that the four angles in the theorem make one full circle, so ∠AID + ∠BIC = 2π π = π. − D b C b I b b D′′ b b b A B D′ Figure 1. Construction of the points D′ and D′′ ( ) In a convex quadrilateral where I is the intersection of the angle bisectors at A⇐and C, and the equality ∠AIB + ∠CID = ∠AID + ∠BIC (1) holds, assume without loss of generality that AB > AD and BC > CD. 1 Con- struct points D′ and D′′ on AB and BC respectively such that AD′ = AD and CD′′ = CD (see Figure 1). Then triangles AID′ and AID are congruent, and so are triangles CID′′ and CID. Thus ID′ = ID = ID′′. These two pairs 1If instead there is equality in one of these inequalities, then it’s easy to see that the quadrilateral is a kite. It’s well known that kites have an incircle. Angle and circle characterizations of tangential quadrilaterals 3 of congruent triangles and (1) yields that ∠BID′ = ∠BID′′, so triangles BID′ and BID′′ are congruent. Thus BD′ = BD′′. Together with AD′ = AD and CD′′ = CD, we get ′ ′ ′′ ′′ AD + D B + CD = AD + BD + D C AB + CD = AD + BC. ⇒ Then ABCD is a tangential quadrilateral according to Pitot’s theorem. The idea for the proof of the converse comes from [8], where Goutham used this method to prove the converse of a related characterization of tangential quadrilat- erals concerning areas. That characterization states that if I is the intersection of the angle bisectors at A and C in a convex quadrilateral ABCD, then it has an incircle if and only if SAIB + SCID = SAID + SBIC , where SXYZ stands for the area of triangle XYZ. According to [9, p.134], this theorem is due to V. Pop and I. Gavrea. In [6, pp.117–118] a similar characteriza- tion concerning the same four areas was proved, but it also includes the four sides. It states that ABCD is a tangential quadrilateral if and only if c SAIB + a SCID = b SAID + d SBIC , · · · · where a = AB, b = BC, c = CD and d = DA. The next characterization is about the angle between the diagonals. We will assume we know the lengths of the four parts that the intersection of the diagonals divide them into.
Recommended publications
  • Extremal Problems for Convex Polygons ∗
    Extremal Problems for Convex Polygons ∗ Charles Audet Ecole´ Polytechnique de Montreal´ Pierre Hansen HEC Montreal´ Fred´ eric´ Messine ENSEEIHT-IRIT Abstract. Consider a convex polygon Vn with n sides, perimeter Pn, diameter Dn, area An, sum of distances between vertices Sn and width Wn. Minimizing or maximizing any of these quantities while fixing another defines ten pairs of extremal polygon problems (one of which usually has a trivial solution or no solution at all). We survey research on these problems, which uses geometrical reasoning increasingly complemented by global optimization meth- ods. Numerous open problems are mentioned, as well as series of test problems for global optimization and nonlinear programming codes. Keywords: polygon, perimeter, diameter, area, sum of distances, width, isoperimeter problem, isodiametric problem. 1. Introduction Plane geometry is replete with extremal problems, many of which are de- scribed in the book of Croft, Falconer and Guy [12] on Unsolved problems in geometry. Traditionally, such problems have been solved, some since the Greeks, by geometrical reasoning. In the last four decades, this approach has been increasingly complemented by global optimization methods. This allowed solution of larger instances than could be solved by any one of these two approaches alone. Probably the best known type of such problems are circle packing ones: given a geometrical form such as a unit square, a unit-side triangle or a unit- diameter circle, find the maximum radius and configuration of n circles which can be packed in its interior (see [46] for a recent survey and the site [44] for a census of exact and approximate results with up to 300 circles).
    [Show full text]
  • Properties of Equidiagonal Quadrilaterals (2014)
    Forum Geometricorum Volume 14 (2014) 129–144. FORUM GEOM ISSN 1534-1178 Properties of Equidiagonal Quadrilaterals Martin Josefsson Abstract. We prove eight necessary and sufficient conditions for a convex quadri- lateral to have congruent diagonals, and one dual connection between equidiag- onal and orthodiagonal quadrilaterals. Quadrilaterals with both congruent and perpendicular diagonals are also discussed, including a proposal for what they may be called and how to calculate their area in several ways. Finally we derive a cubic equation for calculating the lengths of the congruent diagonals. 1. Introduction One class of quadrilaterals that have received little interest in the geometrical literature are the equidiagonal quadrilaterals. They are defined to be quadrilat- erals with congruent diagonals. Three well known special cases of them are the isosceles trapezoid, the rectangle and the square, but there are other as well. Fur- thermore, there exists many equidiagonal quadrilaterals that besides congruent di- agonals have no special properties. Take any convex quadrilateral ABCD and move the vertex D along the line BD into a position D such that AC = BD. Then ABCD is an equidiagonal quadrilateral (see Figure 1). C D D A B Figure 1. An equidiagonal quadrilateral ABCD Before we begin to study equidiagonal quadrilaterals, let us define our notations. In a convex quadrilateral ABCD, the sides are labeled a = AB, b = BC, c = CD and d = DA, and the diagonals are p = AC and q = BD. We use θ for the angle between the diagonals. The line segments connecting the midpoints of opposite sides of a quadrilateral are called the bimedians and are denoted m and n, where m connects the midpoints of the sides a and c.
    [Show full text]
  • Ethnomathematics and Education in Africa
    Copyright ©2014 by Paulus Gerdes www.lulu.com http://www.lulu.com/spotlight/pgerdes 2 Paulus Gerdes Second edition: ISTEG Belo Horizonte Boane Mozambique 2014 3 First Edition (January 1995): Institutionen för Internationell Pedagogik (Institute of International Education) Stockholms Universitet (University of Stockholm) Report 97 Second Edition (January 2014): Instituto Superior de Tecnologias e Gestão (ISTEG) (Higher Institute for Technology and Management) Av. de Namaacha 188, Belo Horizonte, Boane, Mozambique Distributed by: www.lulu.com http://www.lulu.com/spotlight/pgerdes Author: Paulus Gerdes African Academy of Sciences & ISTEG, Mozambique C.P. 915, Maputo, Mozambique ([email protected]) Photograph on the front cover: Detail of a Tonga basket acquired, in January 2014, by the author in Inhambane, Mozambique 4 CONTENTS page Preface (2014) 11 Chapter 1: Introduction 13 Chapter 2: Ethnomathematical research: preparing a 19 response to a major challenge to mathematics education in Africa Societal and educational background 19 A major challenge to mathematics education 21 Ethnomathematics Research Project in Mozambique 23 Chapter 3: On the concept of ethnomathematics 29 Ethnographers on ethnoscience 29 Genesis of the concept of ethnomathematics among 31 mathematicians and mathematics teachers Concept, accent or movement? 34 Bibliography 39 Chapter 4: How to recognize hidden geometrical thinking: 45 a contribution to the development of an anthropology of mathematics Confrontation 45 Introduction 46 First example 47 Second example
    [Show full text]
  • Allowing Coverage Holes of Bounded Diameter in Wireless Sensor
    1 Trap Coverage: Allowing Coverage Holes of Bounded Diameter in Wireless Sensor Networks Paul Balister x Zizhan Zhengy Santosh Kumarx Prasun Sinhay x University of Memphis y The Ohio State University fpbalistr,[email protected] fzhengz,[email protected] Abstract—Tracking of movements such as that of people, or blanket coverage [19]), as has been the case in prototype animals, vehicles, or of phenomena such as fire, can be achieved deployments [14], [17], [22]. The requirement of full coverage by deploying a wireless sensor network. So far only prototype will soon become a bottleneck as we begin to see real-life systems have been deployed and hence the issue of scale has not become critical. Real-life deployments, however, will be at large deployments. scale and achieving this scale will become prohibitively expensive In this paper, we therefore propose a new model of coverage, if we require every point in the region to be covered (i.e., full called Trap Coverage, that scales well with large deployment coverage), as has been the case in prototype deployments. regions. We define a Coverage Hole in a target region of In this paper we therefore propose a new model of coverage, deployment A to be a connected component1 of the set of called Trap Coverage, that scales well with large deployment regions. A sensor network providing Trap Coverage guarantees uncovered points of A. A sensor network is said to provide that any moving object or phenomena can move at most a Trap Coverage with diameter d to A if the diameter of any (known) displacement before it is guaranteed to be detected by Coverage Hole in A is at most d.
    [Show full text]
  • Art Problem Solving
    the ART of PROBLEM SOLVING Volume 1: the BASICS Sandor Lehoczky Richard Rusczyk Copyright © 1993,1995, 2003,2004, 2006 Sandor Lehoczky and Richard Rusczyk. All Rights Reserved. Reproduction of any part of this book without expressed permission of the authors is strictly forbid­ den. For use outside the classroom of the problems contained herein, permission must be acquired from the cited sources. ISBN-10: 0-9773045-6-6 ISBN-13: 978-0-9773045-6-1 Published by: AoPS Incorporated P.O. Box 2185 Alpine, CA 91903-2185 (619) 659-1612 [email protected] Visit the Art of Problem Solving website at http: //www. artofproblemsolving. com Printed in the United States of America. Seventh Edition; printed in 2006. Editor: David Patrick Cover image designed by Vanessa Rusczyk using KaleidoTile software. Cover Image: "Grand Canyon from South Rim" by Ansel Adams. No permissions required; National Archive photo 79-AAF-8. This book was produced using the KTgX document processing system. Diagrams created by Maria Monks using METRPOST. To Ameyalli, for laughter as clear as your lake, for spirit strong and serene as your skyline, for all that you have taught and learned in four winters. And to Mrs. Wendt, who is still by far the best teacher I ever had. —SL For my desert flower Vanessa. Told you we'd make it there eventually. —RR Special thanks to the following people who helped make this possible: William and Claire Devlin, Sandor L. and Julieanne G. Lehoczky, Steve and Ann Rubio, Richard and Claire Rusczyk, Stanley Rusczyk. Thanks A large number of individuals and organizations have helped make the ART of PROBLEM SOLVING possible.
    [Show full text]
  • Journal of Classical Geometry Volume 3 (2014) Index
    Journal of Classical Geometry Volume 3 (2014) Index 1 Artemy A. Sokolov and Maxim D. Uriev, On Brocard’s points in polygons................................. 1 2 Pavel E. Dolgirev, On some properties of confocal conics . 4 3 Paris Pamfilos, Ellipse generation related to orthopoles . 12 4 Danylo Khilko, Some properties of intersection points of Euler line and orthotriangle . 35 5 Pavel A. Kozhevnikov and Alexey A. Zaslavsky On Generalized Brocard Ellipse . ......................... 43 6Problemsection.............................53 7IXGeometricalolympiadinhonourofI.F.Sharygin........56 ON BROCARD’S POINTS IN POLYGONS ARTEMY A. SOKOLOV AND MAXIM D. URIEV Abstract. In this note we present a synthetic proof of the key lemma, defines in the problem of A. A. Zaslavsky. For any given convex quadriaterial ABCD there exists a unique point P such that \P AB = \PBC = \PCD. Let us call this point the Brocard point (Br(ABCD)), and respective angle — Brocard angle (φ(ABCD)) of the bro- ken line ABCD. You can read the proof of this fact in the beginning of the article by Dimitar Belev about the Brocard points in a convex quadrilateral [1]. C B P A D Fig. 1. In the first volume of JCGeometry [2] A. A. Zaslavsky defines the open problem mentioning that φ(ABCD)=φ(DCBA) (namely there are such points P and Q, that \P AB = \PBC = \PCD = \QBA = \QCB = \QDC = φ, moreover OP = OQ and \POQ =2φ)i↵ABCD is cyclic, where O is the circumcenter of ABCD. Synthetic proof of these conditions is provided below. Proof. 1) We have to prove that if φ(ABCD)=φ(DCBA), then ABCD is cyclic.
    [Show full text]
  • IMO 2016 Training Camp 3
    IMO 2016 Training Camp 3 Big guns in geometry 5 March 2016 At this stage you should be familiar with ideas and tricks like angle chasing, similar triangles and cyclic quadrilaterals (with possibly some ratio hacks). But at the IMO level there is no guarantee that these techniques are sufficient to solve contest geometry problems. It is therefore timely to learn more identities and tricks to aid our missions. 1 Harmonics. Ever thought of the complete quadrilateral below? P E F Q B A D C EB FP AD EB FP AC By Ceva's theorem we have · · = 1 and by Menelaus' theorem, · · = EP FA DB EP FA CB −1 (note: the negative ratio simply denotes that C is not on segment AB.) We therefore have: AD AC : = −1:(∗) DB CB We call any family of four collinear points (A; B; C; D) satisfying (*) a harmonic bundle. A pencil P (A; B; C; D) is the collection of lines P A; P B; P C; P D. We name it a har- monic pencil if (A; B; C; D) is harmonic (so the line P (A; B; C; D) above is indeed a har- AD PA sin AP D AC PA sin AP C monic pencil). As = · \ and = · \ we know that DB PB sin \BP D CB PB sin BP C 1 AD AC sin AP D sin AP C sin AP D sin AP C j : j = \ : \ we know that \ = \ iff P (A; B; C; D) DB CB sin \BP D sin \BP C sin \BP D sin \BP C is harmonic pencil (assumming that PC and PD are different lines, of course).
    [Show full text]
  • Cyclic and Bicentric Quadrilaterals G
    Cyclic and Bicentric Quadrilaterals G. T. Springer Email: [email protected] Hewlett-Packard Calculators and Educational Software Abstract. In this hands-on workshop, participants will use the HP Prime graphing calculator and its dynamic geometry app to explore some of the many properties of cyclic and bicentric quadrilaterals. The workshop will start with a brief introduction to the HP Prime and an overview of its features to get novice participants oriented. Participants will then use ready-to-hand constructions of cyclic and bicentric quadrilaterals to explore. Part 1: Cyclic Quadrilaterals The instructor will send you an HP Prime app called CyclicQuad for this part of the activity. A cyclic quadrilateral is a convex quadrilateral that has a circumscribed circle. 1. Press ! to open the App Library and select the CyclicQuad app. The construction consists DEGH, a cyclic quadrilateral circumscribed by circle A. 2. Tap and drag any of the points D, E, G, or H to change the quadrilateral. Which of the following can DEGH never be? • Square • Rhombus (non-square) • Rectangle (non-square) • Parallelogram (non-rhombus) • Isosceles trapezoid • Kite Just move the points of the quadrilateral around enough to convince yourself for each one. Notice HDE and HE are both inscribed angles that subtend the entirety of the circle; ≮ ≮ likewise with DHG and DEG. This leads us to a defining characteristic of cyclic ≮ ≮ quadrilaterals. Make a conjecture. A quadrilateral is cyclic if and only if… 3. Make DEGH into a kite, similar to that shown to the right. Tap segment HE and press E to select it. Now use U and D to move the diagonal vertically.
    [Show full text]
  • Largest Small N-Polygons: Numerical Results and Conjectured Optima
    Largest Small n-Polygons: Numerical Results and Conjectured Optima János D. Pintér Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA, USA [email protected] Abstract LSP(n), the largest small polygon with n vertices, is defined as the polygon of unit diameter that has maximal area A(n). Finding the configuration LSP(n) and the corresponding A(n) for even values n 6 is a long-standing challenge that leads to an interesting class of nonlinear optimization problems. We present numerical solution estimates for all even values 6 n 80, using the AMPL model development environment with the LGO nonlinear solver engine option. Our results compare favorably to the results obtained by other researchers who solved the problem using exact approaches (for 6 n 16), or general purpose numerical optimization software (for selected values from the range 6 n 100) using various local nonlinear solvers. Based on the results obtained, we also provide a regression model based estimate of the optimal area sequence {A(n)} for n 6. Key words Largest Small Polygons Mathematical Model Analytical and Numerical Solution Approaches AMPL Modeling Environment LGO Solver Suite For Nonlinear Optimization AMPL-LGO Numerical Results Comparison to Earlier Results Regression Model Based Optimum Estimates 1 Introduction The diameter of a (convex planar) polygon is defined as the maximal distance among the distances measured between all vertex pairs. In other words, the diameter of the polygon is the length of its longest diagonal. The largest small polygon with n vertices is the polygon of unit diameter that has maximal area. For any given integer n 3, we will refer to this polygon as LSP(n) with area A(n).
    [Show full text]
  • Volume 6 (2006) 1–16
    FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 6 2006 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Khoa Lu Nguyen and Juan Carlos Salazar, On the mixtilinear incircles and excircles,1 Juan Rodr´ıguez, Paula Manuel and Paulo Semi˜ao, A conic associated with the Euler line,17 Charles Thas, A note on the Droz-Farny theorem,25 Paris Pamfilos, The cyclic complex of a cyclic quadrilateral,29 Bernard Gibert, Isocubics with concurrent normals,47 Mowaffaq Hajja and Margarita Spirova, A characterization of the centroid using June Lester’s shape function,53 Christopher J.
    [Show full text]
  • If the Measure of the Set of Arcs of Type (A) Is Ma, Etc., Then (Since the Two Boundary Components Match Up) We Have 2Ma + Mb =2Mc + Mb
    9. ALGEBRAIC CONVERGENCE If the measure of the set of arcs of type (a) is ma, etc., then (since the two boundary components match up) we have 2ma + mb =2mc + mb. But cases (a) and (c) 9.32 are incompatible with each other, so it must be that ma = mc = 0. Note that γ is orientable: it admits a continuous tangent vector field. By inspection we see a complementary region which is a punctured bigon. Since the area of a punctured bigon is 2π, which is the same as the area of T − p, this is the only complementary region. It is now clear that a compactly supported measured lamination on T − p with every leaf dense is essentially complete—there is nowhere to add new leaves under a small perturbation. If γ has a single closed leaf, then consider the families of measures on train tracks: 9.33 These train tracks cannot be enlarged to train tracks carrying measures. This can be deduced from the preceding argument, or seen as follows. At most one new branch could be added (by area considerations), and it would have to cut the punctured bigon into a punctured monogon and a triangle. 244 Thurston — The Geometry and Topology of 3-Manifolds 9.5. INTERPOLATING NEGATIVELY CURVED SURFACES The train track is then orientable in the complement of the new branch, so a train can traverse this branch at most once. This is incompatible with the existence of a − positive measure. Therefore ML0(T p) is two-dimensional, so τ1 and τ2 carry a neighborhood of γ.
    [Show full text]
  • Areas of Polygons Inscribed in a Circle
    Discrete Comput Geom 12:223-236 (1994) G iii try 1994 Springer-VerlagNew York Inc. Areas of Polygons Inscribed in a Circle D. P. Robbins Center for Communications Research, Institute for Defense Analyses, Princeton, NJ 08540, USA robbins@ ccr-p.ida.org Abstract. Heron of Alexandria showed that the area K of a triangle with sides a, b, and c is given by lr = x/s(s - a)~s - b• - c), where s is the semiperimeter (a + b + c)/2. Brahmagupta gave a generalization to quadrilaterals inscribed in a circle. In this paper we derive formulas giving the areas of a pentagon or hexagon inscribed in a circle in terms of their side lengths. While the pentagon and hexagon formulas are complicated, we show that each can be written in a surprisingly compact form related to the formula for the discriminant of a cubic polynomial in one variable. 1. Introduction Since a triangle is determined by the lengths, a, b, c of its three sides, the area K of the triangle is determined by these three lengths. The well-known formula K = x/s(s - aXs - bXs - c), (1.1) where s is the semiperimeter (a + b + c)/2, makes this dependence explicit. (This formula is usually ascribed to Heron of Alexandria, c. 60 B.c., although some attribute it to Archimedes.) For polygons of more than three sides, the lengths of the sides do not determine the polygon or its area. However, if we impose the condition that the polygon be convex and cyclic (i.e., inscribed in a circle), then the area of the polygon is uniquely determined.
    [Show full text]