Talaromyces Marneffei Infection in a Chinese Child with a Complex Heterozygous CARD9 Mutation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity and Toxigenicity of Fungi That Cause Pineapple Fruitlet Core Rot
toxins Article Diversity and Toxigenicity of Fungi that Cause Pineapple Fruitlet Core Rot Bastien Barral 1,2,* , Marc Chillet 1,2, Anna Doizy 3 , Maeva Grassi 1, Laetitia Ragot 1, Mathieu Léchaudel 1,4, Noel Durand 1,5, Lindy Joy Rose 6 , Altus Viljoen 6 and Sabine Schorr-Galindo 1 1 Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Reunion, F-34398 Montpellier, France; [email protected] (M.C.); [email protected] (M.G.); [email protected] (L.R.); [email protected] (M.L.); [email protected] (N.D.); [email protected] (S.S.-G.) 2 CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Reunion, France 3 CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Reunion, France; [email protected] 4 CIRAD, UMR Qualisud, F-97130 Capesterre-Belle-Eau, Guadeloupe, France 5 CIRAD, UMR Qualisud, F-34398 Montpellier, France 6 Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa; [email protected] (L.J.R.); [email protected] (A.V.) * Correspondence: [email protected]; Tel.: +262-2-62-49-27-88 Received: 14 April 2020; Accepted: 14 May 2020; Published: 21 May 2020 Abstract: The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces. -
Card9 As a Critical Regulator of Tumor Development
Cancer Letters 451 (2019) 150–155 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Mini-review Card9 as a critical regulator of tumor development T ∗ Xiaoming Zhongb,1, Bin Chenc,1, Liang Yangd, Zhiwen Yanga, a Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China b Jiangxi Province Tumor Hospital, Nanchang, China c Surgery Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China d Nanjing Medical University, The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Nanjing, China ARTICLE INFO ABSTRACT Keywords: Caspase recruitment domain-containing protein 9 (Card9) is a myeloid cell-specific signaling protein that plays a Card9 critical role in NF-κB and MAPK activation. This leads to initiation of the inflammatory cytokine cascade, and Macrophages elicits the host immune response against microbial invasion, especially in fungal infection. Current research Tumor growth indicates that Card9 plays an important role in tumor progression. Here, we review the data from preclinical and Target therapy clinical studies of Card9 and suggest the potential for Card9-targeted interventions in the prevention or treat- ment of certain tumors. 1. Introduction humans. Among the various etiological factors, hepatitis C virus (HCV) infection is a major cause of HCC [11]. It is of great value for under- Caspase recruitment domain-containing protein 9 (Card9) is a cen- standing the HCC progression in HCV-infected patients. tral integrator of innate and adaptive immunity that is mainly expressed Zekri and colleagues studied 130 patients with HCV-associated liver in myeloid cells, especially in macrophages and dendritic cells. -
Turning on Virulence: Mechanisms That Underpin the Morphologic Transition and Pathogenicity of Blastomyces
Virulence ISSN: 2150-5594 (Print) 2150-5608 (Online) Journal homepage: http://www.tandfonline.com/loi/kvir20 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein To cite this article: Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein (2018): Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces, Virulence, DOI: 10.1080/21505594.2018.1449506 To link to this article: https://doi.org/10.1080/21505594.2018.1449506 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group© Joseph A. McBride, Gregory M. Gauthier and Bruce S. Klein Accepted author version posted online: 13 Mar 2018. Submit your article to this journal Article views: 15 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kvir20 Publisher: Taylor & Francis Journal: Virulence DOI: https://doi.org/10.1080/21505594.2018.1449506 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, MDa,b,d, Gregory M. Gauthier, MDa,d, and Bruce S. Klein, MDa,b,c a Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA; b Division of Infectious Disease, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1675 Highland Avenue, Madison, WI 53792, USA; c Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, WI 53706, USA. -
Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result. -
A New Vision of Iga Nephropathy: the Missing Link
International Journal of Molecular Sciences Review A New Vision of IgA Nephropathy: The Missing Link Fabio Sallustio 1,2,* , Claudia Curci 2,3,* , Vincenzo Di Leo 3 , Anna Gallone 2, Francesco Pesce 3 and Loreto Gesualdo 3 1 Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, 70124 Bari, Italy 2 Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; [email protected] 3 Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro”, 70124 Bari, Italy; [email protected] (V.D.L.); [email protected] (F.P.); [email protected] (L.G.) * Correspondence: [email protected] (F.S.); [email protected] (C.C.) Received: 7 December 2019; Accepted: 24 December 2019; Published: 26 December 2019 Abstract: IgA Nephropathy (IgAN) is a primary glomerulonephritis problem worldwide that develops mainly in the 2nd and 3rd decade of life and reaches end-stage kidney disease after 20 years from the biopsy-proven diagnosis, implying a great socio-economic burden. IgAN may occur in a sporadic or familial form. Studies on familial IgAN have shown that 66% of asymptomatic relatives carry immunological defects such as high IgA serum levels, abnormal spontaneous in vitro production of IgA from peripheral blood mononuclear cells (PBMCs), high serum levels of aberrantly glycosylated IgA1, and an altered PBMC cytokine production profile. Recent findings led us to focus our attention on a new perspective to study the pathogenesis of this disease, and new studies showed the involvement of factors driven by environment, lifestyle or diet that could affect the disease. -
Defining the Relevant Combinatorial Space of the PKC/CARD-CC Signal Transduction Nodes
bioRxiv preprint doi: https://doi.org/10.1101/228767; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Defining the relevant combinatorial space of the PKC/CARD-CC signal transduction nodes Jens Staal1,2,*, Yasmine Driege1,2, Mira Haegman1,2, Styliani Iliaki1,2, Domien Vanneste1,2, Inna Affonina1,2, Harald Braun1,2, Rudi Beyaert1,2 1 Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium, 2 VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium. * corresponding author: [email protected] Running title: PKC/CARD-CC signaling Abbreviations: Bcl10 = B Cell CLL/Lymphoma 10 CARD = Caspase activation and recruitment domain CC = Coiled-coil domain MALT1 = Mucosa-associated lymphoid tissue lymphoma translocation protein 1 PKC = protein kinase C Keywords: Inflammation, cancer, NF-kappaB, paracaspase Conflict of interests: The authors declare no conflict of interest. bioRxiv preprint doi: https://doi.org/10.1101/228767; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Biological signal transduction typically display a so-called bow-tie or hour glass topology: Multiple receptors lead to multiple cellular responses but the signals all pass through a narrow waist of central signaling nodes. -
Estimation of the Burden of Serious Human Fungal Infections in Malaysia
Journal of Fungi Article Estimation of the Burden of Serious Human Fungal Infections in Malaysia Rukumani Devi Velayuthan 1,*, Chandramathi Samudi 1, Harvinder Kaur Lakhbeer Singh 1, Kee Peng Ng 1, Esaki M. Shankar 2,3 ID and David W. Denning 4,5 ID 1 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] (C.S.); [email protected] (H.K.L.S.); [email protected] (K.P.N.) 2 Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 3 Department of Microbiology, School of Basic & Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 101, Tamil Nadu, India 4 Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK; [email protected] 5 The National Aspergillosis Centre, Education and Research Centre, Wythenshawe Hospital, Manchester M23 9LT, UK * Correspondence: [email protected]; Tel.: +60-379-492-755 Received: 11 December 2017; Accepted: 14 February 2018; Published: 19 March 2018 Abstract: Fungal infections (mycoses) are likely to occur more frequently as ever-increasingly sophisticated healthcare systems create greater risk factors. There is a paucity of systematic data on the incidence and prevalence of human fungal infections in Malaysia. We conducted a comprehensive study to estimate the burden of serious fungal infections in Malaysia. Our study showed that recurrent vaginal candidiasis (>4 episodes/year) was the most common of all cases with a diagnosis of candidiasis (n = 501,138). -
Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. -
Genome Sequencing and Analysis of Talaromyces Pinophilus Provide
www.nature.com/scientificreports OPEN Genome sequencing and analysis of Talaromyces pinophilus provide insights into biotechnological Received: 4 October 2016 Accepted: 3 March 2017 applications Published: xx xx xxxx Cheng-Xi Li, Shuai Zhao, Ting Zhang, Liang Xian, Lu-Sheng Liao, Jun-Liang Liu & Jia-Xun Feng Species from the genus Talaromyces produce useful biomass-degrading enzymes and secondary metabolites. However, these enzymes and secondary metabolites are still poorly understood and have not been explored in depth because of a lack of comprehensive genetic information. Here, we report a 36.51-megabase genome assembly of Talaromyces pinophilus strain 1–95, with coverage of nine scaffolds of eight chromosomes with telomeric repeats at their ends and circular mitochondrial DNA. In total, 13,472 protein-coding genes were predicted. Of these, 803 were annotated to encode enzymes that act on carbohydrates, including 39 cellulose-degrading and 24 starch-degrading enzymes. In addition, 68 secondary metabolism gene clusters were identified, mainly including T1 polyketide synthase genes and nonribosomal peptide synthase genes. Comparative genomic analyses revealed that T. pinophilus 1–95 harbors more biomass-degrading enzymes and secondary metabolites than other related filamentous fungi. The prediction of theT. pinophilus 1–95 secretome indicated that approximately 50% of the biomass-degrading enzymes are secreted into the extracellular environment. These results expanded our genetic knowledge of the biomass-degrading enzyme system of T. pinophilus and its biosynthesis of secondary metabolites, facilitating the cultivation of T. pinophilus for high production of useful products. Talaromyces pinophilus, formerly designated Penicillium pinophilum, is a fungus that produces biomass-degrading enzymes such as α-amylase1, cellulase2, endoglucanase3, xylanase2, laccase4 and α-galactosidase2. -
New Xerophilic Species of Penicillium from Soil
Journal of Fungi Article New Xerophilic Species of Penicillium from Soil Ernesto Rodríguez-Andrade, Alberto M. Stchigel * and José F. Cano-Lira Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, Reus, 43201 Tarragona, Spain; [email protected] (E.R.-A.); [email protected] (J.F.C.-L.) * Correspondence: [email protected]; Tel.: +34-977-75-9341 Abstract: Soil is one of the main reservoirs of fungi. The aim of this study was to study the richness of ascomycetes in a set of soil samples from Mexico and Spain. Fungi were isolated after 2% w/v phenol treatment of samples. In that way, several strains of the genus Penicillium were recovered. A phylogenetic analysis based on internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II subunit 2 gene (rpb2) sequences showed that four of these strains had not been described before. Penicillium melanosporum produces monoverticillate conidiophores and brownish conidia covered by an ornate brown sheath. Penicillium michoacanense and Penicillium siccitolerans produce sclerotia, and their asexual morph is similar to species in the section Aspergilloides (despite all of them pertaining to section Lanata-Divaricata). P. michoacanense differs from P. siccitol- erans in having thick-walled peridial cells (thin-walled in P. siccitolerans). Penicillium sexuale differs from Penicillium cryptum in the section Crypta because it does not produce an asexual morph. Its ascostromata have a peridium composed of thick-walled polygonal cells, and its ascospores are broadly lenticular with two equatorial ridges widely separated by a furrow. All four new species are xerophilic. -
Download Slides (Pdf)
PEARLS OF LABORATORY MEDICINE Hyaline and Mucorales Molds Dennise E. Otero Espinal MD Assistant Director of Clinical Pathology at Lenox Hill Hospital DOI: 10.15428/CCTC.2019.304881 © Clinical Chemistry Objectives • Name methods for mold identification • Describe the characteristics of hyaline molds • Discuss some of the most commonly Mucorales fungi isolated in the laboratory 2 Methods of Identification • Direct visualization • Slide prepared before setting fungal cultures • Calcofluor White fluorescent stain o Non- specific 1 Hyaline mold stained with Calcofluor White fluorescent stain. Photo credit: Melinda Wills • Histology o Hematoxilin & Eosin stain (H&E) o Gomori Methenamine Silver stain (GMS) o Periodic acid–Schiff (PAS) o Non-specific 2 Rhizopus spp. - H&E, 60x 3 Methods of Identification • Culture • Colony morphology • Lactophenol cotton blue stain • Media types: o Non-selective o With antibiotics o With cycloheximide • MALDI-TOF MS • DNA sequencing Penicillium spp., lactophenol cotton blue stain, 60x 4 Hyaline Molds • Rapid growth • Thin, regularly septate hyphae • Acute angle branching septations (blue arrows) • Aspergillus spp., Fusarium spp., and Scedosporium spp. may be indistinguishable by Hyaline mold, H&E stain, 60x histology 5 Hyaline Molds - Aspergillus fumigatus Complex • Most common cause of invasive aspergillosis, allergic aspergillosis, fungal sinusitis, and aspergilloma (fungus ball) 1 • Fast growing blue-green colonies with white borders (image 1), white to tan on reverse • Dome or flask-shaped vesicle with uniseriate phialides covering 2/3 of the vesicle (red arrows image 2) 2 A. fumigatus complex - Lactophenol cotton blue stain, 60x 6 Hyaline Molds - Aspergillus flavus Complex • Second most common cause of invasive aspergillosis • Producer of aflatoxin • Fast growing, yellow-green 1 colonies, yellowish on reverse (image 1) • Rough or spiny conidiophore, may be hard to see (red arrow image 2) • Globose vesicle covered by uniseriate or biseriate phialides 2 A. -
Influence of Galectin-3 on the Innate Immune Response During
Journal of Fungi Article Influence of Galectin-3 on the Innate Immune Response during Experimental Cryptococcosis Caroline Patini Rezende 1, Patricia Kellen Martins Oliveira Brito 2 , Thiago Aparecido Da Silva 2 , Andre Moreira Pessoni 1 , Leandra Naira Zambelli Ramalho 3 and Fausto Almeida 1,* 1 Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; [email protected] (C.P.R.); [email protected] (A.M.P.) 2 Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; [email protected] (P.K.M.O.B.); [email protected] (T.A.D.S.) 3 Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; [email protected] * Correspondence: [email protected] Abstract: Cryptococcus neoformans, the causative agent of cryptococcosis, is the primary fungal pathogen that affects the immunocompromised individuals. Galectin-3 (Gal-3) is an animal lectin involved in both innate and adaptive immune responses. The present study aimed to evaluate the influence of Gal-3 on the C. neoformans infection. We performed histopathological and gene profile analysis of the innate antifungal immunity markers in the lungs, spleen, and brain of the wild-type (WT) and Gal-3 knockout (KO) mice during cryptococcosis. These findings suggest that Gal-3 absence does not cause significant histopathological alterations in the analyzed tissues. The expression profile of the genes related to innate antifungal immunity showed that the presence of cryptococcosis in Citation: Rezende, C.P.; Brito, the WT and Gal-3 KO animals, compared to their respective controls, promoted the upregulation P.K.M.O.; Da Silva, T.A.; Pessoni, of the pattern recognition receptor (PRR) responsive to mannose/chitin (mrc1) and a gene involved A.M.; Ramalho, L.N.Z.; Almeida, F.