Penetration Simulation for Uncontained Engine Debris Impact on Fuselage-Like Panels Using LS-DYNA
Finite Elements in Analysis and Design 36 (2000) 99}133 Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA Norman F. Knight Jr! *, Navin Jaunky", Robin E. Lawson#, Damodar R. Ambur$ !Veridian MRJ Engineering, Yorktown, VA 23693-2619, USA "Eagle Aeronautics, Inc., Newport News, VA 23606, USA #Newport News Ship Building and Dry Dock Company, Newport News, VA 23607, USA $NASA Langley Research Center, Hampton, VA 23681-0001, USA Abstract Modeling and simulation requirements for uncontained engine debris impact on fuselage skins are proposed and assessed using the tied-nodes-with-failure modeling approach for penetration. A "nite element analysis is used to study the penetration of aluminum plates impacted by titanium impactors in order to simulate the e!ect of such uncontained engine debris impacts on aircraft fuselage-like skin panels. LS-DYNA is used in the simulations to model the impactor, test "xture frame and target barrier plate. The e!ects of mesh re"nement, contact modeling, and impactor initial velocity and orientation are studied using a con"g- uration for which limited test data are available for comparison. ( 2000 Elsevier Science B.V. All rights reserved. Keywords: Impact; Penetration; LS-DYNA; Finite elements 1. Introduction Prediction of the elasto-plastic, large-deformation, transient dynamic behavior involving impact of multiple deformable bodies continues to provide new insights into the response of complex structural systems subjected to extreme loading conditions or exposed to extreme environments (e.g., Refs. [1}3]). Much of the computational mechanics technology necessary for simulating this behavior evolved over decades of research sponsored in part by government laboratories which also have had access to large supercomputer facilities.
[Show full text]