Sexual Dimorphism and the Evolution of Higher Primates from R

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Dimorphism and the Evolution of Higher Primates from R Nature Vol. 287 25 September 1980 273 Snakeblennies from Alwyne Wheeler The snakeblennies (fishes of the tribe Ophiclinini within the family Clinidae) are small (up to 16 cm long) and live in shallow water along the cool, southern coasts of Australia. They can be captured in tidal rock pools and in bays at depths of 13 m and several species are known to burrow in mud. A recent taxonomic study by George and Springer• has made a considerable contribution to our knowledge of these fishes, not least because they name no fewer than five previously undescribed species. They have also revised all the previously named species and produced a clarification of the relationships of these little-known fishes. Thus, the species Peronedys anguillaris which was Ophiclinops hutchinsi, new species (89.0 mm); Ophiclinus pectoralis, new species (52.0 mm); previously assigned to a family on its Ophiclinus gracilis (68 .0 mm). Drawings by J .R. Schroeder. own, and the genus Sticharium which hitherto had been placed in the are placed in a tribe Ophiclinini within the fins, including the newly described Notograptidae, are now combined with Clinidae. Ophiclinops hutchinsi from Western the Ophiclinidae. These fishes are not, One of the pieces of evidence which Australia. however, considered to be distinct from substantiates the close relationship of • Anita George & Victor G. Springer: Revision of the clinid fish the members of the family Clinidae, Peronedys (which was thought to be tribe Ophiclinini , including five new species, and definition of 1he family Clinidac. Smithsonian Contributions to Zoology which are widely distributed through the distinguished by having no pectoral fins) 307 (Smithsonian Institut ion Press, City of Washington, 1980). tropical and subtropical oceans. For this is that several of the species of Alwyne Wheeler works on fishes at the British reason, these southern Australian fishes Ophiclinops have very minute pectoral Museum (Natural History), London. Sexual dimorphism and the evolution of higher primates from R. D. Marlin IN this issue of Nature Fleagle et al. report was not until 1977 that a new programme trial mammals at that stage. Conversely, that three species of primate from Oligocene of joint expeditions was organised by the reconstructions of continental positions deposits at the Fayum fossil site show Geological Survey of Egypt and Duke indicate that invasion of South America evidence of sexual dimorphism. This University. The new initiative has yielded from North America would have been at discovery has important implications for our additional material throwing new light on least equally unlikely during the Oligocene. understanding of the radiation of monkeys, the early evolution of the higher primates. In all of this, the Fayum primates occupy apes and man as well as enabling us guess Interpretation of the initial radiation of a central position as the earliest relevant something of the social structure of the the monkeys, apes and man has been fossils. Interestingly, they do show nume­ earliest known Old World anthropoids. thrown into turmoil by new information on rous cranial and postcranial similarities to The Fayum fossil site in the Egyptian continental drift. The traditional view, modern New World monkeys, but this is desert south-west of Cairo is of special assuming stable continental positions is compatible with either monkey or ape significance for the reconstruction of that the New World monkeys (platyrrhine) origins since the similarities concern primate evolution. Vertebrate fossils from and the Old World monkeys and apes primitive features only to be expected in these Oligocene deposits, dating back some (catarrhines) are two quite distinct early representative5 of the simian grade. It 30 million years, include the first known branches derived from a prosimian stock is therefore crucial to determine whether representatives of the 'higher' primates spanning the northern continents. The the Fayum primates exhibit specializations (monkeys, apes and man). In fact, in the platyrrhines and catarrhines are held to specifically linking them to Old World entire African continent, fossil primates have attained the 'simian grade' indepen­ monkeys and apes. On the basis of previous from this site provide the only undisputed dently through parallel evolution. The evidence, Simons and his colleagues has palaeontological evidence of primate acceptance of continental drift has, how­ already suggested this to be the case. evolution for the first half of the Tertiary ever, generated increasing support for the Indeed, Simons proposed that the fossils epoch (Palaeocene-Eocene-Oligocene). alternative view that the platyrrhines and could be divided into two groups (Apidium The first fragmentary jaws and teeth of catarrhines shared a common ancestor in and Parapithecus vs O/igopithecus, Fayum primates were recorded about 75 Africa which had already attained the Propliopithecus and Aegyptopithecus) years ago and a series of collecting simian grade. Opponents of this inter­ related to the origins of the Old World expeditions led by Elwyn Simons (then of pretation point out that the first fossil monkeys and apes, respectively. Yale University) in 1963-1967 produced a evidence for New World monkeys appears The new primate fossil material from the wealth of fossil material from five primate only in the late Oligocene and that the Fayum deposits has produced no great genera (Apidium; Parapithecus; Oligopi­ South Atlantic undoubtedly represented a surprises in taxonomic terms; all of the new t hecus; Propliopithecus; Aegyptopi­ formidable barrier to invasion by terres­ specimens can be confidently allocated to thecus). But soon afterwards events in the R . D. Marlin is Reader in Physical four of the five existing genera (Apidium; Middle East led to suspension of all Anthropology, University College, London and Parapithecus; Propliopithecus; Aegyp­ palaeontological work in the Fayum, and it Visiting Professor in Zoology at Birkbeck topithecus). But the increased sample sizes College, London. 0028-0836/ 80/ 39027].0)$01 .(X) ©1980 Mai:millan Jou rnals Ltd .
Recommended publications
  • Paralouatta Varonai. a New Quaternary Platyrrhine from Cuba
    Manuel River0 Paralouatta varonai. a new Quaternary Faruldad de Biologia, 1 ~niversidadde platyrrhine from Cuba IA Habana, Ln Habana, Cuba Paralouatta varonai, new gen. and sp., from the Quaternary of Cuba, is diag- Oscar Arredondo nosed on the basis ofa skull lacking only portions of the face and the anterior dentition. Among extant platyrrhines, the new monkey shares important derived resemblances with Alouatta, including: (1) form of hafting of the neurocranium and face, (2) depth of malar corpus, and (3) marked lateral flaring of the maxillary root of the zygomatic process. It differs from Alouatta Received 27 June 1990 in mostly primitive ways, including: (1) presence of downwardly-directed Revision received 1 October 1990 foramen magnum, (2) less vertical orientation ofnuchal plane, and (3) curw and accepted I November 1990 of Spee opening less sharply upward. A conspicuous autapomorphy of P. vnronai is the extremely large size of the orbits, paralleled among living ~~vul~,rds;Platyrrhini, Atelidae. piatyrrhines only in Aotw. ~w&xuztln onrona:, Quaternary, Cuba, Fossil primates. journal oj Human .!hlution ( 1991) 21, l-1 1 introduction It is increasingly apparent that the Greater Antilles possessed a diverse array of platyrrhine primates during geologically recent times. To date, primate remains have been recovered from cave sites on three of these islands-Jamaica, Hispaniola and Cuba (Ameghino, 19 10; Miller, 1916, 1929; Williams & Koopman, 1952; Rimoli, 1977; MacPhee & Woods, 1982; Ford & Morgan, 1986,1988; Ford, 1990; MacPhee & Fleagle, in press). Some of this material has yet to be formally described and the number of good species represented in existing collections is unclear.
    [Show full text]
  • The Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • Aspects of Ecology and Adaptation with an Emphasis on Hominoid Evolution
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-1997 Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution Clare Katharine Stott University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Anthropology Commons Recommended Citation Stott, Clare Katharine, "Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution. " Master's Thesis, University of Tennessee, 1997. https://trace.tennessee.edu/utk_gradthes/4234 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Clare Katharine Stott entitled "Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology. Andrew Kramer, Major Professor We have read this thesis and recommend its acceptance: Richard Jantz, Lyle Konigsberg Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Clare K. Stott entitled "Aspects of Ecology and Adaptation with an Emphasis on Hominoid Evolution".
    [Show full text]
  • Closest Relatives of Primates Earliest True Primates Share
    Closest relatives of Primates Earliest true primates share: • Archonta • Inner ear morphology – Scandentia (tree shrews) • Postorbital bar, orbital convergence – Dermoptera (flying lemurs) • Large brain case with large orbits – Chiroptera (bats) • Modifications of the elbow • Plesiadapiformes • Elongation of the heel, opposable thumb – Paleocene radiation of unusual critters and nails (instead of claws) – Replaced by rodents – Put in and out of Primate order Eocene Oligocene • Lots of fossils from N America and Europe; little • Continents mostly in present positions from Africa or Asia; • S America and Australia separate from • Prosimians anatomically and likely behaviorally Antarctica • Adapoids and Omomyoids, ecologically diverse; • Best site is Fayum, Egypt 28-32 my very similar early so likely monophyly Lemurs, Lorises • Adapoids like higher primates with large size, • , early anthropoid primates diurnality, frugivory and folivory (feet like lemurs) • Propliopithecus and Aegyptopithecus • Omomyoids more similar to galagos but • Dental apes but New World monkey bodies increase in size and folivorous late • Late Oligocene settling of S. America by • Where are prosimians lately? anthropoid primates Relationships based on fossils and Monkey Evolution molecular evidence • Hominoid and cercopithecoid apomorphies • New World Monkeys (Platyrrhini) show up in Oligocene, primitive versions by Miocene and at 20 and 18 my thereafter look very much like modern forms • Gibbons and Siamangs at 17 my • Old World Monkeys (Catarrhini) show up in Miocene (after apes); Victoriapithecus and then • Orang utans at 12 my split between colobines and cercopithecines; lots of evolutionary change late and lots of • Gorillas at 9 my convergences make systematics challenging • Pan troglodytes and Pan paniscus at 6 my • Also absence of fossils from many lineages • Very successful lately; out competing most apes • Putting chimp vs.
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • MANI-002 PHYSICAL ANTHROPOLOGY Indira Gandhi National Open University School of Social Sciences
    MANI-002 PHYSICAL ANTHROPOLOGY Indira Gandhi National Open University School of Social Sciences Block 3 PRIMATE STUDY UNIT 1 Living Primates 5 UNIT 2 Primate Behaviour 24 UNIT 3 Phylogeny of Living Primates and Primate Anatomy 42 Expert Committee Professor I. J. S. Bansal Professor S.Channa Retired, Department of Human Biology Department of Anthropology Punjabi University University of Delhi, Delhi Patiala Professor P. Vijay Prakash Professor K. K. Misra Department of Anthropology Director Andhra University Indira Gandhi Rashtriya Manav Visakhapatnam Sangrahalaya, Bhopal Dr. Nita Mathur Professor Ranjana Ray Associate Professor Retired, Department of Anthropology, Faculty of Sociology Calcutta University School of Social Sciences Kolkata Indira Gandhi National Open University Maidan Garhi, New Delhi Professor P. Chengal Reddy Retired, Department of Anthropology Dr. S. M. Patnaik S V University, Tirupati Associate Professor Department of Anthropology Professor R. K. Pathak University of Delhi, Delhi Department of Anthropology Panjab University Dr. Manoj Kumar Singh Chandigarh Assistant Professor Department of Anthropology Professor A. K. Kapoor University of Delhi, Delhi Department of Anthropology University of Delhi, Delhi Faculty of Anthropology SOSS, IGNOU Professor V.K.Srivastava Principal, Hindu College Dr. Rashmi Sinha, Reader University of Delhi, Delhi Dr. Mitoo Das, Assistant Professor Professor Sudhakar Rao Dr. Rukshana Zaman, Assistant Professor Department of Anthropology Dr. P Venkatramana, Assistant Professor University of Hyderabad, Hyderabad Dr. K. Anil Kumar, Assistant Professor Programme Coordinator: Dr. Rashmi Sinha, SOSS, IGNOU, New Delhi Course Coordinator: Dr. Rashmi Sinha, SOSS, IGNOU, New Delhi Content Editor Language Editor Professor V. Rami Reddy Mrs. Narinder Jit Kaur Retired, Department of Anthropology Retired, Associate Professor in English S V University, Tirupati Government Mohindra College, Patiala Blocks Preparation Team Unit Writers Professor P.
    [Show full text]
  • Allometric Scaling in the Dentition of Primates and Prediction of Body Weight from Tooth Size in Fossils
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 58%-100 (1982) Allometric Scaling in the Dentition of Primates and Prediction of Body Weight From Tooth Size in Fossils PHILIP D. GINGERICH, B. HOLLY SMITH, AND KAREN ROSENBERG Museum of Paleontology (P.D.G.)and Department of Anthropology (B.H.S. and K.R.), The University of Michigan, Ann Arbor, Michigan 48109 KEY WORDS Primate dentition, Allometry, Body size, Adapidae, Hominoidea ABSTRACT Tooth size varies exponentially with body weight in primates. Logarithmic transformation of tooth crown area and body weight yields a linear model of slope 0.67 as an isometric (geometric) baseline for study of dental allometry. This model is compared with that predicted by metabolic scaling (slope = 0.75). Tarsius and other insectivores have larger teeth for their body size than generalized primates do, and they are not included in this analysis. Among generalized primates, tooth size is highly correlated with body size. Correlations of upper and lower cheek teeth with body size range from 0.90-0.97, depending on tooth position. Central cheek teeth (P: and M:) have allometric coefficients ranging from 0.57-0.65, falling well below geometric scaling. Anterior and posterior cheek teeth scale at or above metabolic scaling. Considered individually or as a group, upper cheek teeth scale allometrically with lower coefficients than corresponding lower cheek teeth; the reverse is true for incisors. The sum of crown areas for all upper cheek teeth scales significantly below geometric scaling, while the sum of crown areas for all lower cheek teeth approximates geometric scaling. Tooth size can be used to predict the body weight of generalized fossil primates.
    [Show full text]
  • Ancestral Facial Morphology of Old World Higher Primates (Anthropoidea/Catarrhini/Miocene/Cranium/Anatomy) BRENDA R
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5267-5271, June 1991 Evolution Ancestral facial morphology of Old World higher primates (Anthropoidea/Catarrhini/Miocene/cranium/anatomy) BRENDA R. BENEFIT* AND MONTE L. MCCROSSINt *Department of Anthropology, Southern Illinois University, Carbondale, IL 62901; and tDepartment of Anthropology, University of California, Berkeley, CA 94720 Communicated by F. Clark Howell, March 11, 1991 ABSTRACT Fossil remains of the cercopithecoid Victoia- (1, 5, 6). Contrasting craniofacial configurations of cercopithe- pithecus recently recovered from middle Miocene deposits of cines and great apes are, in consequence, held to be indepen- Maboko Island (Kenya) provide evidence ofthe cranial anatomy dently derived with regard to the ancestral catarrhine condition of Old World monkeys prior to the evolutionary divergence of (1, 5, 6). This reconstruction has formed the basis of influential the extant subfamilies Colobinae and Cercopithecinae. Victoria- cladistic assessments ofthe phylogenetic relationships between pithecus shares a suite ofcraniofacial features with the Oligocene extant and extinct catarrhines (1, 2). catarrhine Aegyptopithecus and early Miocene hominoid Afro- Reconstructions of the ancestral catarrhine morphotype pithecus. AU three genera manifest supraorbital costae, anteri- are based on commonalities of subordinate morphotypes for orly convergent temporal lines, the absence of a postglabellar Cercopithecoidea and Hominoidea (1, 5, 6). Broadly distrib- fossa, a moderate to long snout, great facial
    [Show full text]
  • 08 Early Primate Evolution
    Paper No. : 14 Human Origin and Evolution Module : 08 Early Primate Evolution Development Team Principal Investigator Prof. Anup Kumar Kapoor Department of Anthropology, University of Delhi Dr. Satwanti Kapoor (Retd Professor) Paper Coordinator Department of Anthropology, University of Delhi Mr. Vijit Deepani & Prof. A.K. Kapoor Content Writer Department of Anthropology, University of Delhi Prof. R.K. Pathak Content Reviewer Department of Anthropology, Panjab University, Chandigarh 1 Early Primate Evolution Anthropology Description of Module Subject Name Anthropology Paper Name Human Origin and Evolution Module Name/Title Early Primate Evolution Module Id 08 Contents: Fossil Primates: Introduction Theories of primate origin Primates: Pre- Pleistocene Period a. Palaeocene epoch b. Eocene epoch c. Oligocene epoch d. Miocene – Pliocene epoch Summary Learning outcomes: The learner will be able to develop: an understanding about fossil primates and theories of primate origin. an insight about the extinct primate types of Pre-Pleistocene Period. 2 Early Primate Evolution Anthropology Fossil Primates: Introduction In modern time, the living primates are graded in four principle domains – Prosimian, Monkey, Ape and man. On the basis of examination of fossil evidences, it has been established that all the living primates have evolved and ‘adaptively radiated’ from a common ancestor. Fossil primates exhibit a palaeontological record of evolutionary processes that occurred over the last 65 to 80 million years. Crucial evidence of intermediate forms, that bridge the gap between extinct and extant taxa, is yielded by the macroevolutionary study of the primate fossil evidences. The paleoanthropologists often utilize the comparative anatomical method to develop insight about morphological adaptations in fossil primates.
    [Show full text]
  • Kingdom =Animalia Phylum =Chordata Subphylum =Vertebrata Class =Mammalia Order =Primates I. PARTIAL
    Kingdom =Animalia '' Phylum =Chordata '' Subphylum =Vertebrata '' Class =Mammalia '' Order =Primates 130-132 I. PARTIAL TAXONOMIC CLASSIFICATION OF PREHISTORIC AND CONTEMPORARY PRIMATES 176-187 197-198/Lab 7.II. Suborder Infraorder Superfamily Family Genus Species Common Name Prosimii [tree shrew = insectivore] (Strepsirhini) lemur 132-134 aye-aye 188-191 loris and bush baby tarsier Anthropoidea Platyrrhini *Parapithecus (basal anthropoid) (Haplorhini) 134-136 *Apidium (basal anthropoid) 134-138 Ceboidea New World monkey 188-191 Catarrhini *Propliopithecus (basal catarrhine) 136-138 *Aegyptopithecus (basal catarrhine) Cercopithecoidea Cercopithecidae Old World monkey 124-126 Macaca macaque Papio baboon Colobidae Colobus colobus monkey Presbytis langur Hominoidea *Proconsulidae *Proconsul 138-143 191-193 Lab 7. II. D. *Oreopithecidea *Oreopithecus Hylobatidae Hylobates gibbon *Pliopithecidae *Pliopithecus Pongidae *Dryopithecus *dryopithecus *Sivapithecus *ramapithecus *kenyapithecus *ouranopithecus *Gigantopithecus Pongo orangutan Panidae Pan traglodytes chimpanzee Pan paniscus bonobo (“pygmy chimpanzee”) Pan ? Gorilla gorilla Mountain gorilla Gorilla Western lowland g. 202-204 Hominidae *Ardipithecus *ramidus 213-218 1 228-237 *Australopithecus *anamensis 241-245 *afarensis Lucy / First Family Lab 8 *africanus southern ape *garhi *[aka Paranthropus]1 *aethiopicus *boisei Zinj *robustus *Kenyanthropus *platyops 1 237-238 Homo *rudolfensis ER-1470 245-247 *habilis human Ch. 11 *erectus Java / Peking “Man” Lab 10 sapiens Mary / John Chs. 12-13 Lab 12 An * marks groups known only through fossils. Compare: FIGURE 6-7 Primate taxonomic classification, p. 131 FIGURE 6-8 Revised partial classification of the primates, p. 132 FIGURE 8-1 Classification chart, modified from Linnaeus p. 177 FIGURE 8-15 Major events in early primate evolution, p. 191 Virtual Lab 1, section II, parts A-D Primate Classification 1(Note: Australopithecus and Paranthropus make up a “Subfamily” called Australopithecinae, more commonly known as Australopithecines.
    [Show full text]
  • Aegyptopithecus and Proconsul
    Correlation of Tooth Size and Body Size in Living Hominoid Primates, with a Note on Relative Brain Size in Aegyptopithecus and Proconsul PHILIP D. GINGERICH Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109 KEY WORDS Tooth size a Body size - Hominoidea . Aegrp- topithecus . Proconsul . Relative brain size ABSTRACT Second molar length and body weight are used to test the corre- lation between tooth size and body size in living Hominoidea. These variates are highly correlated G. = 0.942,~< 0.001),indicating that tooth size can be used in dentally unspecialized fossil hominoids as one method of predicting the average body weight of species. Based on tooth size, the average body weight of Aegyp- topithecus zeuxis is estimated to have been between 4.5 and 7.5 kg, which is cor- roborated by known cranial and postcranial elements. Using Radinsky's esti- mates of brain size, the encephalization quotient (EQ) for Aegyptopithecus was between 0.65 and 1.04. A similar analysis for Proconsul africanus yields a body weight between 16 and 34 kg, and an EQ between 1.19 and 1.96. Dental enamel is the hardest and densest that attempts to infer body size from tooth tissue in the mammalian skeleton, and as a size in fossil hominoid primates are unjusti- result teeth are the most commonly preserved fied. However, the correlation of body size remains of mammals in the fossil record. Most with tooth size across species of a superfamily mammalian teeth do not continue to grow like the Hominoidea is not the same as the during life-once the teeth have formed and correlation of these variables within a species.
    [Show full text]