Oakley's Absolute Dating Series © Cambridge University Press Www

Total Page:16

File Type:pdf, Size:1020Kb

Oakley's Absolute Dating Series © Cambridge University Press Www Cambridge University Press 0521664861 - The Cambridge Dictionary of Human Biology and Evolution Larry L. Mai, Marcus Young Owl and M. Patricia Kersting Excerpt More information Abdur Reef A. n dates: see Oakley’s dating series in box below. A antigen: epitope that specifies the A in the ABO AAA: abbreviation for several societies of interest to blood group. It consists of four precursor sugars human evolutionary biologists, including the attached to glycoproteins of the cell membrane, American Anthropological Association and the aka H substance, plus a specific fifth terminal sugar, American Anatomical Association. N-acetylgalactosamine, that is attached by an enzyme. A Oakley’s absolute dating series A.1 date: highest of Oakley’s hierarchical levels of absolute dating, the direct dating of a specimen, e.g. by measuring the radiocarbon activity of a bone itself. A.2 date: one of Oakley’s hierarchical levels of absolute dating, dating derived from direct determination by physical measurement of the age of the sediments containing the fossil specimen. A.3 date: one of Oakley’s hierarchical levels of absolute dating, the correlation of a fossil-bearing horizon with another deposit whose age has been determined directly by A.1 or A.2 methods. See biostratigraphy. A.4 date: lowest of Oakley’s hierarchical levels of absolute dating, estimating an absolute age on the basis of some theoretical consideration, such as matching climatic fluctuations observed in strata with astro- nomically derived curves of effective solar radiation, or matching terrestrial glacial and interglacial episodes with the known marine paleotemperature or oxygen isotope stage. (Cf. R.n dates) This enzyme differs from its homologue that attaches abdominal circumference: anthropometric meas- the B-specific sugar by one amino acid substitution. urement; distance around the torso measured with See B antigen and O null allele. a tape measure placed at the level of the greatest AAFS: see American Academy of Forensic anterior extension of the abdomen in the horizon- Scientists. tal plane, normally the umbilicus, passed horizon- AAPA: see American Association of Physical tally around the body. The measurement is taken Anthropologists. after a normal expiration. Used for various body abaxial: on the opposite side of, or facing away from, indices pertaining to adipose distribution. Cf. waist the axis of a structure or an organism. circumference. Abbeville: archaeological site found in 1830 in the abdominal skinfold: anthropometric measurement; French Valley of the Somme, possibly dated to the skinfold measured about 3 cm lateral to the umbil- first interglacial (ϭ Pleistocene deposits) described icus. Used in combination with other skinfold by Boucher de Perthes in 1847; one of the first his- measurements to estimate body composition. See torical cases of artifacts of arguable antiquity; used skinfold thickness. as proof of the existence of early humans contrary to abductor: muscle or muscle group that moves a body the story contained in Genesis. Through the early part away from the mid-line; aka levator. Cf. adductor. twentieth century the term Abbevillian was applied abductor pollicis brevis: intrinsic muscle of the globally to the most ancient tool deposits; Oakley hand; it originates from the scaphoid and trapezium lumped both Oldowan choppers and Acheulean and inserts into the lateral surface of metacarpal I. Its choppers under this term. Aka Port du Bois, action is to abduct the thumb; one of the thenar Menchecourt-les-Abbeville. group of muscles. Cf. adductor pollicis. Abbevillian tool tradition: term that refers to pre- abductor pollicis longus: muscle that acts on the Acheulean stone-tool assemblages found in Europe; hand; it originates from the posterior surface of the among the artifacts are crude bifacial tools con- radius and ulna and inserts into the base of structed with a hammerstone rather than a softer metacarpal I. Its action is to abduct and extend the striking instrument (as in Acheulean).Aka Chellean. thumb. See Oldowan. Abdur Reef: archaeological site near Abdur along the abdomen: portion of the body between the thorax and Bari Coast in Eritrea on the coast of the Red Sea, the pelvis. dating to 125kya (U/Th). The elevated reef contains abdominal cavity: space within the body between the artifacts including bifacial hand-axes, blade tools respiratory diaphragm and the pelvic inlet in which and sharpened obsidian flakes found among the abdominal viscera are contained; abdomen. shellfish remains and animals bones deposited on an Cf. coelom. uplifted reef system. Aka Abdur Limestone Site. 1 © Cambridge University Press www.cambridge.org Cambridge University Press 0521664861 - The Cambridge Dictionary of Human Biology and Evolution Larry L. Mai, Marcus Young Owl and M. Patricia Kersting Excerpt More information abris aberrant: 1. a departure from the norm; an anomaly or antecedent to later colonizers. In reference to humans, aberration. 2. in genetics, an individual phenotype this term has been applied most often to the original that exhibits atypical characteristics due to the inhabitants of Australia; aborigine. Cf. indigenous, influence of the environment rather than from autochthonous. genetic factors. abortion: 1. arrest of a process or disease before com- ABH blood group (ABH): a polymorphism found in pletion. 2. interruption of pregnancy before the fetus many organisms and determined by the presence or has attained a stage of viability, usually before the absence of A, B, and/or H antigens found on cell 24th gestational week. There are two classes: an membranes such as erythrocytes. In humans, this induced abortion is the termination of a pregnancy, system has been modified and is named the ABO often for medical reasons, by means other than those blood group. causing spontaneous abortion (aka clinical abortion, abiotrophy: 1. general term denoting degenerative therapeutic abortion, feticide). A spontaneous abortion changes of tissue due to genetic causes. 2. deterior- is the natural termination of a pregnancy before the ation of the body. fetus can survive outside the uterus (between 0 and abnormal: 1. not normal. 2. departing from the usual 20 weeks); occurs in about 30% of first pregnancies, structure, position, or condition. Abnormality. frequently so early that a woman is not aware that abnormal hemoglobins: any of the hemoglobin she was pregnant, and is most often due to chromo- alleles other than hemoglobin A; most are causes of somal errors (50–60%); sometimes applied to a hemoglobinopathies, such as sickle cell anemia specific period of gestation, such as during the first and thalassemia. 20 weeks of pregnancy (aka early fetal death). See ‡ ABO blood group: polymorphism based on the miscarriage and stillbirth. presence or absence of two antigens (IA and IB) found Abri Pataud: archaeological site found in 1949 near on the cell membrane of erythrocytes (red blood Les Eyzies in the Vézère River Valley, Dordogne, cells); the antigens are also found on other cells. The France, dating from 34kya and persisting for over ‘O’ factor is an absent or ‘null’ allele, not an antigen. 14 ky; excavated by H. Movius; contains over 25000 See H substance. Aurignacian II artifacts including burins, an engrav- ABO disease association: any abnormal condition ing tool for working antlers, a venus figurine in relief correlated with an allele or genotype of the ABO on stone, and hominid remains from at least two blood group. A number of diseases are associated individuals, including a young female attributed to with the presence of each of the A, B and O alleles in Homo sapiens. Of 30 crates of animal bones excav- the ABO blood group; among the more prominent ated, about 30% of all prey appear to have been rein- are salivary gland tumors (type A), ulcers (type O), deer. Aka Pataud. and certain infant diarrheas (types A and B). Abri Suard: archaeological site found in 1870 in the La ABO hemolytic disease of the newborn (HDN): Chaise cave area, western France, dated to 200–100 destruction of the erythrocytes of a fetus; a mal- kya; contains hominid remains from several indi- adaptive condition roughly twice as common as the viduals including an incomplete 1050cm3 calotte Rhesus incompatibility form of HDN, but almost assigned to the archaic Neanderthal group. Aka always clinically milder in its manifestation. Caused Suard. by some of the smaller anti-A or anti-B antibodies in Abrigo do Lagar Velho rockshelter: archaeological a mother’s immune system penetrating the placen- site found in 1998 in the Lapedo Valley, north of tal membranes. Lisbon, Portugal, dated to 24.5kya (radiocarbon), ABO incompatibility: lowered probability of concep- that contains Gravettian artifacts. The fossil tion owing to the genotypes in the ABO blood group hominid remains include a nearly complete skeleton possessed by potential parents. In populations that of a child (Lagar Velho 1) attributed to either Homo maintain all three alleles, it has been suggested sapiens or H. neanderthalensis. Among the arti- that type O mothers produce fewer offspring than facts collected were charcoal, stone tools, pierced deer expected when the fathers are either type A or type B; canines and fossilized red deer bones and horse this may be due to the presence of either antibodies teeth. Aka Lagar Velho. This find has been inter- in the mother’s vaginal secretions (that could agglu- preted by some as indicative of gene flow between tinate sperm), or certain smaller classes of maternal Neandertals and AMHs, and in support of the anti-A and anti-B antibodies that could pass through multiregional continuity model. See pierced the placenta and affect the development of the fetus. mammal teeth and last of the Neandertals.Cf. aboriginal: indigenous; native to; original biological Mezmaiskaya Cave. species or populations inhabiting a particular geo- abris: French for shelter; rockshelter is ‘abris sous graphical region, particularly referring to groups roche’. 2 © Cambridge University Press www.cambridge.org Cambridge University Press 0521664861 - The Cambridge Dictionary of Human Biology and Evolution Larry L.
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Nasal Floor Variation Among Eastern Eurasian Pleistocene Homo Xiu-Jie WU1, Scott D
    ANTHROPOLOGICAL SCIENCE Vol. 120(3), 217–226, 2012 Nasal floor variation among eastern Eurasian Pleistocene Homo Xiu-Jie WU1, Scott D. MADDUX2, Lei PAN1,3, Erik TRINKAUS4* 1Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People’s Republic of China 2Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA 3Graduate University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 4Department of Anthropology, Washington University, St Louis, MO 63130, USA Received 28 March 2012; accepted 9 July 2012 Abstract A bi-level nasal floor, although present in most Pleistocene and recent human samples, reaches its highest frequency among the western Eurasian Neandertals and has been considered a fea- ture distinctive of them. Early modern humans, in contrast, tend to feature a level (or sloping) nasal floor. Sufficiently intact maxillae are rare among eastern Eurasian Pleistocene humans, but several fos- sils provide nasal floor configurations. The available eastern Eurasian Late Pleistocene early modern humans have predominantly level nasal floors, similar to western early modern humans. Of the four observable eastern Eurasian archaic Homo maxillae (Sangiran 4, Chaoxian 1, Xujiayao 1, and Chang- yang 1), three have the bi-level pattern and the fourth is scored as bi-level/sloping. It therefore appears that bi-level nasal floors were common among Pleistocene archaic humans, and a high frequency of them is not distinctive of the Neandertals. Key words: noses, maxilla, Asia, palate, Neandertal Introduction dominate with the bi-level configuration being present in ≤10% in all but a sub-Saharan African “Bantu” sample In his descriptions of the Shanidar Neandertal crania, (Table 1).
    [Show full text]
  • Curriculum Vitae Erik Trinkaus
    9/2014 Curriculum Vitae Erik Trinkaus Education and Degrees 1970-1975 University of Pennsylvania Ph.D 1975 Dissertation: A Functional Analysis of the Neandertal Foot M.A. 1973 Thesis: A Review of the Reconstructions and Evolutionary Significance of the Fontéchevade Fossils 1966-1970 University of Wisconsin B.A. 1970 ACADEMIC APPOINTMENTS Primary Academic Appointments Current 2002- Mary Tileston Hemenway Professor of Arts & Sciences, Department of Anthropolo- gy, Washington University Previous 1997-2002 Professor: Department of Anthropology, Washington University 1996-1997 Regents’ Professor of Anthropology, University of New Mexico 1983-1996 Assistant Professor to Professor: Dept. of Anthropology, University of New Mexico 1975-1983 Assistant to Associate Professor: Department of Anthropology, Harvard University MEMBERSHIPS Honorary 2001- Academy of Science of Saint Louis 1996- National Academy of Sciences USA Professional 1992- Paleoanthropological Society 1990- Anthropological Society of Nippon 1985- Société d’Anthropologie de Paris 1973- American Association of Physical Anthropologists AWARDS 2013 Faculty Mentor Award, Graduate School, Washington University 2011 Arthur Holly Compton Award for Faculty Achievement, Washington University 2005 Faculty Mentor Award, Graduate School, Washington University PUBLICATIONS: Books Trinkaus, E., Shipman, P. (1993) The Neandertals: Changing the Image of Mankind. New York: Alfred A. Knopf Pub. pp. 454. PUBLICATIONS: Monographs Trinkaus, E., Buzhilova, A.P., Mednikova, M.B., Dobrovolskaya, M.V. (2014) The People of Sunghir: Burials, Bodies and Behavior in the Earlier Upper Paleolithic. New York: Ox- ford University Press. pp. 339. Trinkaus, E., Constantin, S., Zilhão, J. (Eds.) (2013) Life and Death at the Peştera cu Oase. A Setting for Modern Human Emergence in Europe. New York: Oxford University Press.
    [Show full text]
  • Aspects of Ecology and Adaptation with an Emphasis on Hominoid Evolution
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-1997 Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution Clare Katharine Stott University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Anthropology Commons Recommended Citation Stott, Clare Katharine, "Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution. " Master's Thesis, University of Tennessee, 1997. https://trace.tennessee.edu/utk_gradthes/4234 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Clare Katharine Stott entitled "Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology. Andrew Kramer, Major Professor We have read this thesis and recommend its acceptance: Richard Jantz, Lyle Konigsberg Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Clare K. Stott entitled "Aspects of Ecology and Adaptation with an Emphasis on Hominoid Evolution".
    [Show full text]
  • Abstracts Volume
    SVPCA 58, Cambridge 2010, Preface Welcome to the 58th Symposium of Vertebrate Palaeontology and Comparative Anatomy, hosted by the University Museum of Zoology, Cambridge. We very much hope you find the meeting rewarding, and that you have time to enjoy the other attractions of the university, colleges, and city centre. The meeting logo was designed by Julia Molnar1 and depicts the finback whale (Balaenoptera physalus) on display above the Museum of Zoology. Enjoy your time in Cambridge! 1JuliaMolnar,RoyalVeterinaryCollege,jmolnar-at-rvc.ac.uk 1 SPPC/SVPCA 2010 Programme Overview Tuesday 14th September: SPPC Session 1, Chair: Matt Lowe 15.30-15.50 Christian Baars Infacol – if it’s good enough for babies, it’s good enough for ammonites. 15.50-15.10 Nigel R Larkin The joy of steel: How to master your awkward fossil in the field. 16.10-16.30 Frank Osbaeck Mechanical and chemical preparation methods used on the lower Eocene cementstone concretions from the Mo-Clay of northern Denmark 19.00 onwards EVENING RECEPTION, ZOOLOGY MUSEUM Wednesday 15th September 9.10-9.20 Welcome, notices for the day Session 1, Chair: Paul Barret 9.20-9.40 Eric Buffetaut et al. The Early Cretaceous vertebrate assemblage from the Napai Formation of Guangxi, southern China: a comparison with Thai assemblages 9.40-10.00 Michael J Benton et al. Recovery and expansion of marine vertebrate faunas in the Triassic of South China 10.00-10.20 Susan E Evans and Magdalend Borsuk-Bialynicka The Early Triassic faunal assemblage of Czatkowice, Poland 10.20-10.40 Sweetman, Steven C The first records of amphibians, lizards and maniraptoran dinosaurs from the Lower Cretaceous Hastings Group of south-east England 10.40-11.10 COFFEE BREAK Session 2, Chair: Jenny Clack 11.10-11.30 Tim Smithson and Stan Wood Eliminating Romer’s Gap: new tetrapods from the basal Carboniferous of the Scottish Borders 2 11.30-11.50 Per E Ahlberg et al.
    [Show full text]
  • The Appendicular Remains of the Kiik-Koba 2 Neandertal Infant
    The Appendicular Remains of the Kiik-Koba 2 Neandertal Infant ERIK TRINKAUS Department of Anthropology, Washington University, St. Louis, MO 63130, USA; [email protected] MARIA B. MEDNIKOVA Institute of Archaeology, Russian Academy of Sciences, Dm. Ulianova str. 19, Moscow 117036, RUSSIA; [email protected] LIBBY W. COWGILL Department of Anthropology, University of Missouri, Columbia, MO 65201, USA; [email protected] submitted: 9 August 2016; revised 21 November 2016; accepted 7 December 2016 ABSTRACT The appendicular skeleton (scapula, humerus, ulnae, radii, metacarpals, pollical phalanges, hip bone, femora, tibiae and fibula) of the Neandertal infant from Kiik-Koba (Crimea), Kiik-Koba 2, are reassessed in the context of Late Pleistocene archaic and modern human infant remains. Based on long bone lengths, it should have been 4–6 months old at death, of indeterminate sex. The infant resembles (most) older Neandertals in its scapular dorsal sulcus axillary border, medially oriented radial tuberosity, radial curvature, large pollical opponens flange, and low crural index. It lacks the mediolateral pubic elongation seen in some older Neandertals, its brachial index is average for a Late Pleistocene or recent human, and its femoral neck-shaft angle is low for its developmental age. The percent cortical areas of its humerus and especially femur are average for its age, but its tibial one is unusually low. Yet, when scaled to intermetaphyseal lengths, the midshaft rigidities of all three long bones are unexceptional for a Late Pleistocene or non-mechanized recent human infant. The Kiik-Koba 2 infant limb bones thus provide additional data and inferences concerning the mosaic of Neandertal early postnatal development of postcranial features and appendicular hypertrophy, when assessed in the broader context of both Late Pleistocene and recent human infant remains.
    [Show full text]
  • Juvenile Hominoid Cranium from the Terminal Miocene of Yunnan, China
    Article Geology November 2013 Vol.58 No.31: 37713779 doi: 10.1007/s11434-013-6021-x Juvenile hominoid cranium from the terminal Miocene of Yunnan, China JI XuePing1,2, JABLONSKI Nina G3, SU Denise F4, DENG ChengLong5, FLYNN Lawrence J6, YOU YouShan7 & KELLEY Jay8* 1 Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; 2 Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China; 3 Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA; 4 Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA; 5 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 6 Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA 02138, USA; 7 Zhaotong Institute of Cultural Relics, Zhaotong 657000, China; 8 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA Received May 28, 2013; accepted July 8, 2013; published online August 7, 2013 Fossil apes are known from several late Miocene localities in Yunnan Province, southwestern China, principally from Shihuiba (Lufeng) and the Yuanmou Basin, and represent three species of Lufengpithecus. They mostly comprise large samples of isolated teeth, but there are also several partial or complete adult crania from Shihuiba and a single juvenile cranium from Yuanmou. Here we describe a new, relatively complete and largely undistorted juvenile cranium from the terminal Miocene locality of Shuitangba, also in Yunnan. It is only the second ape juvenile cranium recovered from the Miocene of Eurasia and it is provisionally assigned to the species present at Shihuiba, Lufengpithecus lufengensis.
    [Show full text]
  • Closest Relatives of Primates Earliest True Primates Share
    Closest relatives of Primates Earliest true primates share: • Archonta • Inner ear morphology – Scandentia (tree shrews) • Postorbital bar, orbital convergence – Dermoptera (flying lemurs) • Large brain case with large orbits – Chiroptera (bats) • Modifications of the elbow • Plesiadapiformes • Elongation of the heel, opposable thumb – Paleocene radiation of unusual critters and nails (instead of claws) – Replaced by rodents – Put in and out of Primate order Eocene Oligocene • Lots of fossils from N America and Europe; little • Continents mostly in present positions from Africa or Asia; • S America and Australia separate from • Prosimians anatomically and likely behaviorally Antarctica • Adapoids and Omomyoids, ecologically diverse; • Best site is Fayum, Egypt 28-32 my very similar early so likely monophyly Lemurs, Lorises • Adapoids like higher primates with large size, • , early anthropoid primates diurnality, frugivory and folivory (feet like lemurs) • Propliopithecus and Aegyptopithecus • Omomyoids more similar to galagos but • Dental apes but New World monkey bodies increase in size and folivorous late • Late Oligocene settling of S. America by • Where are prosimians lately? anthropoid primates Relationships based on fossils and Monkey Evolution molecular evidence • Hominoid and cercopithecoid apomorphies • New World Monkeys (Platyrrhini) show up in Oligocene, primitive versions by Miocene and at 20 and 18 my thereafter look very much like modern forms • Gibbons and Siamangs at 17 my • Old World Monkeys (Catarrhini) show up in Miocene (after apes); Victoriapithecus and then • Orang utans at 12 my split between colobines and cercopithecines; lots of evolutionary change late and lots of • Gorillas at 9 my convergences make systematics challenging • Pan troglodytes and Pan paniscus at 6 my • Also absence of fossils from many lineages • Very successful lately; out competing most apes • Putting chimp vs.
    [Show full text]
  • 69Th Annual Meeting Society of Vertebrate Paleontology
    ISSN 0272-4634 September 2009 Society of Vertebrate Paleontology Society of Vertebrate Volume 29, Supplement to Number 3 Volume 69th Annual Meeting Paleontology Society of Vertebrate and Palaeontology of Vertebrate and the 57th Symposium Comparative Anatomy (SVPCA) University of Bristol Bristol, United Kingdom September 23-26, 2009 Program and Abstracts Vol. 29, Supplement to No. 3 September 2009 Wills Memorial 2 1/8” = 1/4 Mile Bristol/Precinct Map Building A4018, M5 junction 17 Badock Hall, Churchill Hall, Durdham Hall, Hiatt Baker Hall, KEY University Hall, Wills Hall Main Entrance to Sites Car Parks Traffic Flow Railway Station Victoria Rooms Burwalls via the Suspension Bridge A369, M5 junction 19 Bristol Marriott B3129 City Centre Hotel Avon Gorge Hotel to M32, M4 junction 19 (A38, A420, A421) Temple Meads Chemistry Building Broadmead Shopping Centre The Grand by Thistle Clifton Hill House Goldney Hall & Clifton Village DETAIL MAP Hotel Novotel Bristol Centre Bristol Temple Meads Railway Station Bristol Marriott A4 Royal Hotel A38, A420, M5 Bristol Airport Taunton, The South West Travelodge Bristol { Central Hotel SEE Bristol Hotel DETAIL MAP Hotel Ibis At-Bristol Bristol Centre Museum University of Bristol Vol. 29, Supplement to No. 3, September 2009 Vol. Technical Session IV, Wednesday 3:30 from the road, is very accessible. All these factors – together with its status as part of the PALEOECOLOGY OF SOUTH ASIAN PRIMATES: PALEOENVIRONMENTAL Ichnite Route of Soria, an open-air museographical area with 15 sites that can be visited IMPLICATIONS and a visitors’ centre – underlay the interest of the local authorities in converting it into a RAMDARSHAN, Anusha, Institut des Sciences de l’Evolution de Montpellier (UMR-CNRS point of tourist and cultural interest that is also accessible to the physically and visually 5554), Montpellier, France; MARIVAUX, Laurent, Institut des Sciences de l’Evolution de handicapped.
    [Show full text]
  • The Cambridge Dictionary of Human Biology and Evolution Larry L
    Cambridge University Press 0521664861 - The Cambridge Dictionary of Human Biology and Evolution Larry L. Mai, Marcus Young Owl and M. Patricia Kersting Excerpt More information Abdur Reef A. n dates: see Oakley’s dating series in box below. A antigen: epitope that specifies the A in the ABO AAA: abbreviation for several societies of interest to blood group. It consists of four precursor sugars human evolutionary biologists, including the attached to glycoproteins of the cell membrane, American Anthropological Association and the aka H substance, plus a specific fifth terminal sugar, American Anatomical Association. N-acetylgalactosamine, that is attached by an enzyme. A Oakley’s absolute dating series A.1 date: highest of Oakley’s hierarchical levels of absolute dating, the direct dating of a specimen, e.g. by measuring the radiocarbon activity of a bone itself. A.2 date: one of Oakley’s hierarchical levels of absolute dating, dating derived from direct determination by physical measurement of the age of the sediments containing the fossil specimen. A.3 date: one of Oakley’s hierarchical levels of absolute dating, the correlation of a fossil-bearing horizon with another deposit whose age has been determined directly by A.1 or A.2 methods. See biostratigraphy. A.4 date: lowest of Oakley’s hierarchical levels of absolute dating, estimating an absolute age on the basis of some theoretical consideration, such as matching climatic fluctuations observed in strata with astro- nomically derived curves of effective solar radiation, or matching terrestrial glacial and interglacial episodes with the known marine paleotemperature or oxygen isotope stage. (Cf.
    [Show full text]
  • The Early Upper Paleolithic Human Skeleton from the Abrigo Do Lagar
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 7604–7609, June 1999 Anthropology The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia (Neandertalsymandibleypostcraniaydentitionyradiocarbon dating) i CIDA´LIA DUARTE*†,JOA˜O MAURI´CIO‡,PAUL B. PETTITT§,PEDRO SOUTO‡,ERIK TRINKAUS¶ **, HANS VAN DER PLICHT††, AND JOA˜O ZILHA˜O‡‡ *Instituto Portugueˆs do Patrimo´nio Arquitecto´nico, Divisa˜ode Conservac¸a˜o e Restauro, Pala´cioda Ajuda, 1400-206 Lisbon, Portugal; †Department of Anthropology, 13-15 Henry Marshall Tory Building, University of Alberta, Edmonton T6G 2H4, AB, Canada; ‡Sociedade Torrejana de Espeleologia e Arqueologia, Quinta da Lezı´ria, 2350 Torres Novas, Portugal; §Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, 6 Keble Road, Oxford OX1 3QJ, England; ¶Department of Anthropology, Campus Box 1114, Washington University, St. Louis, MO 63130; iUnite´Mixte de Recherche 5809 du Centre National de la Recherche Scientifique, Laboratoire d’Anthropologie, Universite´de Bordeaux I, 33405 Talence, France; ††Centrum voor Isotopen Onderzoek, Faculteit der Wiskunde en Natuurwetenschappen, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; and ‡‡Instituto Portugueˆs de Arqueologia, Avenida da India 136, 1300 Lisbon, Portugal Contributed by Erik Trinkaus, April 26, 1999 ABSTRACT The discovery of an early Upper Paleolithic Even though both the late Middle Paleolithic and early human burial at the Abrigo do Lagar Velho, Portugal, has Upper Paleolithic are increasingly well known and chronolog- provided evidence of early modern humans from southern ically situated south of the ‘‘Ebro Frontier’’ (4, 6, 9), diagnostic Iberia. The remains, the largely complete skeleton of a '4- human remains associated with early Upper Paleolithic indus- year-old child buried with pierced shell and red ochre, is dated tries in this region have been elusive.
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]