Himax-2015-Annual-Report.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Himax-2015-Annual-Report.Pdf Dear Shareholders, Our industry endured a difficult year in 2015 which posed challenges during a cycle of soft demand across consumer electronics. Despite this, Himax remained committed to the execution of our long-term strategies. While some of our competitors might have retreated, we continued to invest in new product categories and technologies, and pave inroads into new markets. Particularly, our multi-year partnerships with leading multinationals for AR/VR technologies advanced and hit inflection point in 2015. Seeing strong momentum across all our major product lines, we are confident that we are in a position to deliver strong revenue and earnings growth in 2016. I thank the team for their dedication and to our shareholders for their support in a challenging environment. I will now highlight notable developments during 2015. Our driver ICs for small and medium-sized displays, though still the largest source of revenue for the year, experienced a decline. Notably, our shipment to a key Korean end-customer fell significantly as they replaced a substantial portion of the use of a-Si TFT LCD displays in smartphones, for which we were the main IC supplier, with ones using AMOLED technology. In addition, Chinese smartphone market suffered from three slow quarters during 2015 and the tablet market was lackluster throughout the whole year. However, we successfully mitigated these negative impacts by introducing new products to our leading Chinese smartphone end customers and adding a new top-tier Chinese customer in the second half of 2015. We remain one of the leading driver IC suppliers for small and medium-sized panel makers all across Taiwan, Korea, China and Japan. Our customer base covers the vast majority of major mobile device end customers worldwide. Our leadership in technology, including those forward-looking areas such as AMOLED display drivers and in-cell TDDI, helped secure key design-wins in the second half of 2015, paving the way for a promising year ahead. For the large panel display driver business, we continued to see accelerating sales to Chinese customers and further expanded our leading market share in the country. China’s aggressive TFT-LCD capacity expansion and the higher in-sourcing demands from the local TV set makers, coupled with our leading technology and market share, lifted our large panel segment into a high growth mode once again, despite continuous softness in the worldwide IT market. We believe that Himax is uniquely positioned for a tailwind ride over China’s panel capacity expansion and are confident that the large panel display driver business will generate solid growth in the next few years. The non-driver segment overall also experienced some slowdown in 2015 with the decline of the CMOS image sensors business being the main reason behind the performance. However, LCOS, WLO and timing controllers grew strongly during the year. Our LCOS and WLO business hit inflection in September 2015 with pilot production shipment made to a leading AR device customer. Having invested in the technologies for over 15 years, we are uniquely positioned as the provider of choice for microdisplay and related optics to enable AR devices. LCOS microdisplay and a highly customized optical system are to account for one of the parts with the highest value in the bill-of-material of any AR products. LCOS and WLO are clearly still the critical growth category in 2016, evidenced by increasing shipments and additional design engagements with existing and new customers. Separately, we have also broken into the VR space with major design-wins taking place toward the end of 2015. We stand to benefit from multi-billion dollar AR/VR industry. Lastly, the introduction and mass shipment of our on-cell and pure in-cell products have led to fast customer additions in our touch panel controller business in 2015. We believe that customer base expansion of our touch panel controller business will continue into 2016 with greater contribution coming from TDDI products. Looking ahead into 2016, we continue to stay focused on execution in the following key areas: 1. Grow our large panel display driver business in China’s fast-expanding panel market where we enjoy a long-standing leading market share by providing total solution and leading the charge in new technology areas such as 8K TV and OLED display; 2. Capitalize on our strong position in small and medium panel display drivers to lead the market in major new technologies trends including higher display resolution, AMOLED and in-cell TDDI; 3. Enlarge AR/VR sales through mass production for multiple AR/VR device customers and deepen project engagements with leading players for future versions and applications. 1 We paid a cash dividend of 30 cents per ADS, totaling $51.4 million, in 2015, illustrating our strong confidence in the business prospect. We continued to maintain a strong balance sheet with a healthy cash position and no debt I will close by thanking all of our employees, customers, suppliers and shareholders for your continued support in Himax. We look forward to another year of growth and excitement in 2016. Sincerely, Jordan Wu President and CEO Himax Technologies, Inc. 2 UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 20-F (Mark One) REGISTRATION STATEMENT PURSUANT TO SECTION 12(b) OR (g) OF THE SECURITIES EXCHANGE ACT OF 1934 OR x ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2015 OR TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from ________________ to ________________ OR SHELL COMPANY REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Date of event requiring this shell company report ________________ Commission file number: 000-51847 HIMAX TECHNOLOGIES, INC. (Exact name of Registrant as specified in its charter) Not Applicable (Translation of Registrant’s name into English) CAYMAN ISLANDS (Jurisdiction of incorporation or organization) NO. 26, ZIH LIAN ROAD SINSHIH DISTRICT, TAINAN CITY 74148 TAIWAN, REPUBLIC OF CHINA (Address of principal executive offices) Jackie Chang Chief Financial Officer Telephone: +886-2-2370-3999 E-mail: [email protected] Facsimile: +886-2-2314-0877 10F, No. 1, Xiangyang Road Taipei 10046 Taiwan, Republic of China (Name, Telephone, E-mail and/or Facsimile number and Address of Company Contact Person) Securities registered or to be registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered Ordinary Shares, par value $0.3 per ordinary share The NASDAQ Global Select Market Inc.* * Not for trading, but only in connection with the listing on the NASDAQ Global Select Market, Inc. of American Depositary Shares representing such Ordinary Shares 3 Securities registered or to be registered pursuant to Section 12(g) of the Act: None Securities for which there is a reporting obligation pursuant to Section 15(d) of the Act: None Indicate the number of outstanding shares of each of the issuer’s classes of capital or common stock as of the close of the period covered by the annual report. 343,815,424 Ordinary Shares. Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. x Yes No If this report is an annual or transition report, indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934. Yes x No Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. x Yes No Indicate by check mark whether the registrant has submitted electronically and posted on its corporate Web site, if any, every Interactive Data File required to be submitted and posted pursuant to Rule 405 of Regulation S-T (§232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit and post such files). x Yes No Indicate by check mark whether the registrant is a large accelerated filer, an accelerated filer, or a non- accelerated filer. See definition of “accelerated filer and large accelerated filer” in Rule 12b-2 of the Exchange Act. (Check one): Large accelerated filer x Accelerated filer Non-accelerated filer Indicate by check mark which basis of accounting the registrant has used to prepare the financial statements included in this filing: U.S. GAAP x International Financial Reporting Standards as issued by the International Accounting Standards Board Other If “Other” has been checked in response to the previous question, indicate by check mark which financial statement item the registrant has elected to follow. Item 17 Item 18 If this is an annual report, indicate by check mark whether the registrant is a shell company (as defined in Rule 12b-2 of the Exchange Act). Yes x No 4 TABLE OF CONTENTS PAGES SPECIAL NOTE REGARDING FORWARD-LOOKING STATEMENTS 7 CERTAIN CONVENTIONS 7 PART I 9 ITEM 1. IDENTITY OF DIRECTORS, SENIOR MANAGEMENT AND ADVISERS 9 ITEM 2. OFFER STATISTICS AND EXPECTED TIMETABLE 9 ITEM 3. KEY INFORMATION 9 3.A. Selected Financial Data 9 3.B. Capitalization and Indebtedness 12 3.C. Reason for the Offer and Use of Proceeds 12 3.D. Risk Factors 12 ITEM 4.
Recommended publications
  • Quantum Dot-Based Light Emitting Diodes (Qdleds): New Progress
    DOI: 10.5772/intechopen.69014 Provisional chapter Chapter 3 Quantum Dot-Based Light Emitting Diodes (QDLEDs): QuantumNew Progress Dot-Based Light Emitting Diodes (QDLEDs): New Progress Neda Heydari, Seyed Mohammad Bagher NedaGhorashi Heydari,, Wooje Seyed Han Mohammad and Hyung-Ho Bagher Park Ghorashi, WoojeAdditional Han information and Hyung-Ho is available at Parkthe end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.69014 Abstract In recent years, the display industry has progressed rapidly. One of the most important developments is the ability to build flexible, transparent and very thin displays by organic light emitting diode (OLED). Researchers working on this field try to improve this area more and more. It is shown that quantum dot (QD) can be helpful in this approach. In this chapter, writers try to consider all the studies performed in recent years about quantum dot-based light emitting diodes (QDLEDs) and conclude how this nanoparticle can improve performance of QDLEDs. In fact, the existence of quantum dots in QDLEDs can cause an excellent improvement in their efficiency and lifetime resulted from using improved active layer by colloidal nanocrystals. Finally, the recent progresses on the quantum dot-based light emitting diodes are reviewed in this chapter, and an important outlook into challenges ahead is prepared. Keywords: quantum dot, organic light emitting diode, efficiency, lifetime, active layer 1. Introduction Due to increased population and consumption of more energy, the people of Earth are faced with a serious shortage of energy resources. Therefore, the primary concern of researchers and manufacturers is closely linked to energy consumption.
    [Show full text]
  • LCD Manufacturers Face Price Crisis
    BUSINESS NEWS TECHNOLOGY FOCUS LCD manufacturers face price crisis fter months of price cuts, manufacturers Aof large-size liquid-crystal displays 60,000 (LCDs) are under pressure to reduce panel LCD-TV panels prices further, following a major build-up of LCD-TV set inventory. A recent report from US business analyst iSuppli revealed that the second quarter of 2010 saw the manufacture of 52 40,000 million large (ten inches and above) LCD television panel shipments, but the sale of only 38.7 million LCD television sets. The resulting imbalance between supply 20,000 and demand is having a strong impact on the sector. “This gap is higher than anything seen in 2009. Over-supply persisted in shipments (thousands of units) Total the first two months of the third quarter 0 9 0 0 -0 -1 -1 as buyers cut orders in July and August,” Q1 Q1-09 Q2 Q3-09 Q4-09 Q2 says iSuppli analyst Sweta Dash. “LCD ISUPPLI television brands are expected to lower prices more aggressively to reduce their An imbalance between supply and demand is causing prices to decline in the large-panel LCD industry. inventory levels, thus putting mounting pressure on panel suppliers to reduce and help to steady panel prices by the end of iPhone, iPad and other competing prices further.” the fourth quarter of 2010. products,” explains Jakhanwal. Dash points out that manufacturers of At the same time, rapidly rising sales of “Smart phone manufacturers are now monitor and notebook panels have been smart phones and tablet PCs are predicted adopting TFT LCDs that use in-plane reducing supply to mitigate excessive to see the global market for small- and switching technology, which supports inventory levels, and that panel prices are medium-size thin-film transistor (TFT) a wider viewing angle and better now stabilizing as a result.
    [Show full text]
  • Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report
    JSC-66638 National Aeronautics and RELEASE DATE: November 2013 Space Administration Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report ENGINEERING DIRECTORATE AVIONICS SYSTEMS DIVISION November 2013 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, TX 77058 JSC-66638 Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report November 2013 Prepared by Branch Chief Engineer Human Interface Branch/EV3 281-483-1062 Reviewed by: Glen F. Steele Electronics Engineer Human Interface Branch/EV3 281-483-0191 Approved by: Deborah Buscher Branch Chief Human Interface Branch/EV3 281-483-4422 ii JSC-66638 Table of Contents 1.0 AMOLED Environmental Test Summary ...... ................. .. .. ......... .... .. ... .... ..................... 1 2.0 References ... .......... ... ..... ... .. ...... .. .......................... 2 3.0 Introduction .. ... .. .......... ...... ..... .... ... .... ...... ......... ... ..... ................. ... 3 4.0 Test Article ... ... .... .. .... ... ... ... .. ... .. .. ... ................. .... ... ...... ...... ............. 4 5.0 Environmental Testing ....... ............. .... ... ..... .. ... ....................... .... .... ..... .. ..... ... ...... .. ..... ......... 7 5.1 Electromagnetic Interference (EMI) Test ............... .. .................... ..... .................. ...... 7 5.1.1 Test Description ....................................................... ........................ .. ... .. .... .............. 7 5.1 .2 Results
    [Show full text]
  • AV Solutions Range Guide August 2020 the Sony Solution
    NEW WAYS TO INSPIRE Live Your Vision C AV Solutions Range Guide August 2020 The Sony Solution When it comes to professional AV technology, Sony provides much more than just great products. We create solutions that make visual communications and knowledge sharing even smarter and more efficient. Contents We empower organizations of every industry, sector and size with advanced audio-visual tools that help them go further. From schools to universities, small business to big business, retail to automotive, healthcare to faith-based worship and more, we have the perfect solution. Visual Imaging Welcome Projectors Cameras Our comprehensive suite of TEOS solutions intelligently manage all of your connected devices, while our powerful collaboration tools enable real-time The Sony Solution 3 F-Series laser 18 SRG Series 43 knowledge sharing. Discover new levels of detail with our class-leading P-Series laser 24 POV and BOX cameras 44 BRAVIA Professional Displays, and take your presentations further with our bright, captivating range of Laser Projectors.While our renowned lineup of CW-Series 26 BRC Series 45 Service and Support PTZ cameras feature progressive technologies ideal for remote working and F-lamp 28 IP Remote Controllers 46 distance learning applications. CH-lamp 30 SupportNET 5 E-lamp 32 Visual Simulation and Support is at the heart of everything we do. With our SupportNET, you’ll Visual Entertainment always get the best service for your business. With specialist advice and a host of support features included as standard, we’ve got
    [Show full text]
  • Whitepaper Head Mounted Displays & Data Glasses Applications and Systems
    Whitepaper Head Mounted Displays & Data Glasses Applications and Systems Dr.-Ing. Dipl.-Kfm. Christoph Runde Virtual Dimension Center (VDC) Fellbach Auberlenstr. 13 70736 Fellbach www.vdc-fellbach.de © Competence Centre for Virtual Reality and Cooperative Engineering w. V. – Virtual Dimension Center (VDC) System classes Application fields Directions of development Summary Content . System classes Head Mounted Display (HMD) – Video glasses – Data glasses . Simulator disease / Cyber Sickness . Application fields HMDs: interior inspections, training, virtual hedging engineering / ergonomics . Application fields data glasses: process support, teleservice, consistency checks, collaboration . Directions of development: technical specifications, (eye) tracking, retinal displays, light field technology, imaging depth sensors . Application preconditions information & integration (human, IT, processes) . Final remark 2 SystemSystem classes classes Application fields Directions of development Summary Head Mounted Displays (HMDs) – Overview . 1961: first HMD on market . 1965: 3D-tracked HMD by Ivan Sutherland . Since the 1970s a significant number of HMDs is applied in the military sector (training, additional display) Table: Important HMD- projects since the 1970s [Quelle: Li, Hua et. al.: Review and analysis of avionic helmet-mounted displays. In : Op-tical Engineering 52(11), 110901, Novembre2013] 3 SystemSystem classes classes Application fields Directions of development Summary Classification HMD – Video glasses – Data glasses Head Mounted Display
    [Show full text]
  • Datasheet Amoled
    Datasheet Amoled AL101WXL02-N AM-01-001 The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice. 10.1” 1280 x 800 LCD Module AL101WXL02-N PRODUCT SPECIFICATIONS ( • ) Preliminary specifications ( ) Final specifications DOCUMENT NUMBER: AL101WXL02-N PRODUCT NO.: AL101WXL02-N PRODUCT NAME: 10.1” 1280 x 800 LCD Module CUSTOMER APPROVED BY DATE: APPROVAL -1- REV.: 0.03 2015/10/08 This document contains confidential and proprietary information of AMOLED Corporation. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of AMOLED Corporation. 10.1” 1280 x 800 LCD Module AL101WXL02-N Prepared by Date Revision Changes SY Sep. 2, 2015 0.01 Initial release Asa Sep. 4, 2015 0.02 Optical modified Stanley Oct. 8, 2015 0.03 Add weight -2- REV.: 0.03 2015/10/08 This document contains confidential and proprietary information of AMOLED Corporation. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of AMOLED Corporation. 10.1” 1280 x 800 LCD Module AL101WXL02-N Contents Contents ......................................................................................................................................................... 3 1.
    [Show full text]
  • Fabrication of Organic Light Emitting Diodes in an Undergraduate Physics Course
    AC 2011-79: FABRICATION OF ORGANIC LIGHT EMITTING DIODES IN AN UNDERGRADUATE PHYSICS COURSE Robert Ross, University of Detroit Mercy Robert A. Ross is a Professor of Physics in the Department of Chemistry & Biochemistry at the University of Detroit Mercy. His research interests include semiconductor devices and physics pedagogy. Ross received his B.S. and Ph.D. degrees in Physics from Wayne State University in Detroit. Meghann Norah Murray, University of Detroit Mercy Meghann Murray has a position in the department of Chemistry & Biochemistry at University of Detroit Mercy. She received her BS and MS degrees in Chemistry from UDM and is certified to teach high school chemistry and physics. She has taught in programs such as the Detroit Area Pre-College Engineering Program. She has been a judge with the Science and Engineering Fair of Metropolitan Detroit and FIRST Lego League. She was also a mentor and judge for FIRST high school robotics. She is currently the chair of the Younger Chemists Committee and Treasurer of the Detroit Local Section of the American Chemical Society and is conducting research at UDM. Page 22.696.1 Page c American Society for Engineering Education, 2011 Fabrication of Organic Light-Emitting Diodes in an Undergraduate Physics Course Abstract Thin film organic light-emitting diodes (OLEDs) represent the state-of-the-art in electronic display technology. Their use ranges from general lighting applications to cellular phone displays. The ability to produce flexible and even transparent displays presents an opportunity for a variety of innovative applications. Science and engineering students are familiar with displays but typically lack understanding of the underlying physical principles and device technologies.
    [Show full text]
  • AMOLED Displays
    AMOLED Displays Current Developments and Reckless Predictions 1 Feb. 4, 2011 SID-LA Nutmeg Consultants Ken Werner Principal, Nutmeg Consultants 2 Shady Brook Lane Norwalk, Connecticut 06854 [email protected] +203/644-2156 2 Feb. 4, 2011 SID-LA Nutmeg Consultants Abstract: AMOLED Displays The development of OLED displays has been a rocky road, with prediction after prediction running into delays and revisions. That’s typical for the development of new display technologies, but the huge promise of OLED coupled with the technology’s apparent simplicity made the delays particularly frustrating for OLED. Now, Samsung Mobile Display (SMD), the primary manufacturer of active-matrix OLEDs (AMOLEDs), can’t keep up with demand, and both SMD and LG Display are planning to ramp up Gen 5.5 fabs in mid-2011. These are exciting times for AMOLED, and we can expect an array of new AMOLED-based products, but the melodrama is not over. As it turns out, although AMOLED technology appears simple, it isn’t. Great advances have been made on materials and device structure, resulting in vastly improved efficiency and lifetime, but the lifetime of blue emitters is still seriously deficient for many applications. Although the processes used for making both the OLED front planes and active-matrix backplanes are responsible for the technology’s current success, they are (at least in part) about to be pressed into use for the new, much larger fabs that will soon begin production – even though they have distinct limitations even for today’s generation. Process scalability is a critical issue if OLED displays are to be manufactured in larger sizes at a cost that allows them to be used in high-volume products.
    [Show full text]
  • Review of Display Technologies Focusing on Power Consumption
    Sustainability 2015, 7, 10854-10875; doi:10.3390/su70810854 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Review Review of Display Technologies Focusing on Power Consumption María Rodríguez Fernández 1,†, Eduardo Zalama Casanova 2,* and Ignacio González Alonso 3,† 1 Department of Systems Engineering and Automatic Control, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain; E-Mail: [email protected] 2 Instituto de las Tecnologías Avanzadas de la Producción, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain 3 Department of Computer Science, University of Oviedo, C/González Gutiérrez Quirós, 33600 Mieres, Spain; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-659-782-534. Academic Editor: Marc A. Rosen Received: 16 June 2015 / Accepted: 4 August 2015 / Published: 11 August 2015 Abstract: This paper provides an overview of the main manufacturing technologies of displays, focusing on those with low and ultra-low levels of power consumption, which make them suitable for current societal needs. Considering the typified value obtained from the manufacturer’s specifications, four technologies—Liquid Crystal Displays, electronic paper, Organic Light-Emitting Display and Electroluminescent Displays—were selected in a first iteration. For each of them, several features, including size and brightness, were assessed in order to ascertain possible proportional relationships with the rate of consumption. To normalize the comparison between different display types, relative units such as the surface power density and the display frontal intensity efficiency were proposed.
    [Show full text]
  • Laval Virtual's Missions Are to Gather, Inspire and Valorize Involved in This Study
    The VR/AR special edition #4 health Clinical VR Medicine Well Being #EDITORIAL How VR is changing the way women breast cancer is diagnosed, treated and managed LAURENT CHRÉTIEN DIRECTOR / LAVAL VIRTUAL ancer cells live in complex communities. They will then take all the information they Just like houses in a city, each cell in a collect about the cells in a tumour and use it tumour is different from its neighbour, to construct a 3D version that can be studied Cand relies on infrastructure to support using virtual reality. its existence. And we know that there are different neighbourhoods, some worse than Using virtual reality will allow scientists others. Where we have roads, tumours contain to immerse themselves in a tumour, blood vessels that deliver nutrients, and act meaning they can study patterns and other as highways for different cell types to move characteristics within it, in entirely new around. And when a tumour spreads, the can- ways that aren’t possible in 2D. It will also cer cells themselves use these blood ‘roads’ to allow multiple doctors and scientists to look migrate. at a tumour at the same time, meaning people at opposite ends of a country, and with different areas of expertise, can What the healthcare experts need is a Google Earth-like view work together to help diagnose and treat patients better. And of a tumour. If they could make a 3D map, they would find with the Covid19 crisis, the use of virtual reality to cooperate new targets for treatment and, eventually, could use this view remotely is even more obvious! to track what’s going on in real time, such as in response to treatment.
    [Show full text]
  • Vertical Organic Light Emitting Transistors for Large Screen AMOLED Displays
    Vertical Organic Light Emitting Transistors for Large Screen AMOLED Displays Bo Liu*,**, Mitchell A. McCarthy*,**, Xiao Chen*, David J. Cheney*,**, Maxime G. Lemaitre*,**, Ramesh Jayaraman*, Svetlana Vasilyeva*,**, and Andrew G. Rinzler* *Department of Physics, University of Florida, Gainesville, FL, USA **nVerPix LLC, Gainesville, FL, USA Keywords: OLED; organic light emitting transistor; carbon nanotube; active matrix ABSTRACT to reproduce more vivid images; higher contrast ratios to The carbon nanotube enabled vertical field effect display true black; a 180-degree viewing angle without transistor technology further demonstrates its promise to brightness or color distortion; as well as a thin form factor to allow cost effective manufacturing of large screen AMOLED realize the so-called Wallpaper TV, should virtually displays. Formed essentially by directly stacking an OLED guarantee the success of large screen AMOLED TVs, but onto the vertical channel layer of the vertical field effect only if they can be manufactured cost-effectively without transistor, the resulting vertical organic light emitting compromising performance. transistor combines the driving transistor, storage capacitor Among the manufacturing challenges, a key issue arises and light emitter into a single integrated device. A QVGA from the thin film transistor (TFT) backplane. Within each AMOLED prototype using this technology was pixel the driving TFT need not only supply large current to demonstrated at the 2016 San Francisco SID Display Week, drive the OLED at high brightness, but it must also provide winning the I-Zone award for best prototype. fine control over that current to achieve a well-defined grey We discuss the important desirable benefits obtained scale. The successful LTPS TFT technology used to from this novel device structure for AMOLED display manufacture small size OLED panels suffers from more applications.
    [Show full text]
  • Next Gen Projectors Why Choosing Laser Projection Makes Sense for Churches
    Next Gen Projectors Why choosing laser projection makes sense for churches Summary Our existing lamp based projector was failing and was not really bright enough to serve our needs as we anticipated transitioning to IMAG (image Projection for use during Sunday morning church made its rather quiet debut magnification), where a pastor’s—or vocalist’s—live image can be projected in the 1980’s. Today, projection has grown to become a multimedia staple of onto a screen to provide an up-close experience for those in more remote the modern worship experience. seating. In the eighties, both slide and overhead projectors provided a way for song In our research to find the best solution we looked at, and priced, three different lyrics to be projected during services. In the nineties the technology graduated options; lamp based projection, LED walls and the latest technology to grace to video projection and the use of PowerPoint software, which ruled the this realm—laser projection. presentation landscape. Our church’s screen is 9’x16,’ and like many churches, we have ambient light In the early 2000’s data projection and the exponential advances of presentation issues to deal with. To make a purchase decision we looked at four areas: life software have made their mark. Now in the second decade of the 2000’s, expectancy, maintenance, initial investment and total cost of ownership. LED walls and laser projection are coming into the forefront of presentation hardware. A Bright New Technology Recently, the church I serve at went through the challenge of purchasing new A benefit of recent advancements is that new technologies bring bright, display equipment.
    [Show full text]