Kristian Birkeland Astrophysics and Space Science Library

Total Page:16

File Type:pdf, Size:1020Kb

Kristian Birkeland Astrophysics and Space Science Library KRISTIAN BIRKELAND ASTROPHYSICS AND SPACE SCIENCE LIBRARY VOLUME 325 EDITORIALBOARD Chairman W.B. BURTON, National Astronomy Observatory,Charlottesville, Virginia, U.S.A. ([email protected]);University of Leiden, The Netherlands ([email protected]) Executive Committe J. M. E. KUIJPERS, Faculty of Science, Nijmegen, The Netherlands E. P.J. VAN DEN HEUVEL, Astronomical Institute, University of Amsterdam, The Netherlands H. VAN DER LAAN, Astronomical Institute, University of Utrecht, The Netherlands MEMBERS I. APPENZELLER, Landessternwarte Heidelberg-K¨Konigstuhl,¨ Germany J. N. BAHCALL, The Institute for Advanced Study, Princeton, U.S.A. F. BERTOLA, Universit´tad´ iPPadova, Italy J. P. CASSINELLI, University of Wisconsin, Madison, U.S.A. C.J.CESSARSKY, Centre d’Etudes de Saclay, Gif-sur-Yvette Cedex, France O. ENGVOLD, Institute of Theoretical Astrophysics, University of Oslo, Norway R.MCCRAY, University of Colorado, JILA, Boulder, U.S.A. P. G. MURDIN, Institute of Astronomy Cambridge, U.K. F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHKRISHNAN, Raman Research Institute, Banglore, India K. SATO, School of Science, The University of Tokyo, Japan F. H. SHU, University of California, Berkeley, U.S.A. B. V. SOMOV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia Y. TAANAKA, Institute of Space & Astronautical Science, Kanagawa, Japan S. TREMAINE, CITA, Princeton University, U.S.A. N.O. WEISS, University of Cambridge, U.K. KRISTIAN BIRKELAND The First Space Scientist by ALV E GELAND University of Oslo, Norway and WILLIAM J.BURKE Air Force Research Laboratory, USA A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-3293-5 (HB) Springer Dordrecht, Berlin, Heidelberg,NewYork ISBN-10 1-4020-3294-3 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York ISBN-13 978-1-4020-3293-6 (HB) Springer Dordrecht, Berlin, Heidelberg, New York ISBN-13 978-1-4020-3294-3 (e-book) Springer Dordrecht, Berlin, Heidelberg,NewYork Published by Springer P. O. Box 17, 3300 AA Dordrecht, The Netherlands. Printed on acid-free paper Caption to Front Plate: Professor Kristian Birkeland withhis left hand resting on an electric discharge tube of the high-voltage device used in 1896 to generate artificial auroral displaysin his laboratory. Asta Nørregaard (1853–1933) painted this portrait in 1906 (100 × 83 cm). All Rights Reserved C 2005 Springer No part of thiswork maybe reproduced, storedin a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording orotherwise, without written permission from thePublisher, with the exception of any material supplied specifically for the purpose ofbeing entered and executed on a computer system, for exclusive use by the purchaser of the work. Printedinthe Netherlands. CONTENTS Preface ......................................................... ix Introduction . .................................................... 1 Part I: Background and Education .............................. 11 1At the 19th Century’s E n d....................................... 11 1.1 Union of Norway and Sweden ............................... 11 1.2 The Royal Frederik University in Kristiania ................... 12 1.3 Early Investigation of the Aurora and Geomagnetism ........... 13 2 ANew Abel ................................................... 17 2.1 The Birkeland Family ....................................... 17 2.2 High School and University Education ........................ 19 2.3 Postgraduate Research in France, Switzerland, and Germany .... 22 Part II: Geomagnetic and Solar System Research . ............... 27 3 Aurora inaVacuum Chamber . .................................. 27 3.1 Electromagnetic Wave Experiments .......................... 27 3.2 EarlyLaboratory Simulations ................................ 28 3.3 Birkeland’s O ffices and Laboratories at theUniversity .......... 34 3.4 TerrellaasAnodeExperiments .............................. 36 4 The Norwegian Auroral Expeditions ............................. 45 4.1 Birkeland’s First Expeditions ................................ 45 4.2 Arctic Expedition of 1902–1903 ............................. 57 4.2.1 The Four Stations...................................... 61 4.2.2 Birkeland’s Main Research Contribution ................. 66 4.3 Classification of Geomagnetic Disturbances ................... 70 4.3.1 Polar Elementary Storms ............................... 72 4.3.2 Equatorial Perturbations................................ 73 4.3.3 Cyclo-Median Perturbations ............................ 74 4.3.4 Field-Aligned Currents in Space ........................ 75 4.4 The Permanent Station at Haldde Mountain ................... 77 4.5 Controversies with the British School ......................... 80 5 The Universe in a Vacuum Chamber ............................. 87 5.1 Terrella as Cathode Experiments ............................. 87 5.2 Sunspots and the Solar Magnetic Field ........................ 87 5.3 Comet Tails . ............................................. 90 5.4 Saturn’s Rings.............................................. 93 5.5 Zodiacal Light............................................. 94 5.6 Conflicts with Carl Størmer. ................................. 98 vi CONTENTS Part III: Technology and Applied Physics ........................ 101 6 Fast Switches and Electromagnetic Cannons .................... 101 7 Inas LittleasFourYears...................................... 109 7.1 Plasma Torch and Nitrogen Fixation ...................... 109 7.2 Foundation of Norsk Hydro .............................. 115 7.3 Conflict with Sam Eyde.................................. 120 7.4 Marcus Wallenberg ..................................... 123 7.5 Other Technical Applications............................. 125 7.5.1 X-Rays ........................................... 126 7.5.2 Atomic Energy .................................... 126 7.5.3 Rocket Propulsion . ............................... 128 7.5.4 Radiowave Propagation ............................. 128 7.5.5 Production of Margarine ............................ 129 7.5.6 Hearing Aid ....................................... 129 7.5.7 Cod Caviar ........................................ 130 7.5.8 RadiationTreatment................................ 130 Part IV: Birkeland the Man ..................................... 131 8As Seen in His Own time . .................................... 131 8.1 Teacher and Experimenter . .............................. 132 8.2 Birkeland as a Popular Author . ........................... 135 8.3 Positions and Honors .................................... 137 8.4 Nominations for theNobel Prize . ......................... 138 8.4.1 Nobel Prize inChemistry . .......................... 139 8.4.2 Nobel Prize inPhysics.............................. 140 9 Consummatus in brevi, explevit tempora multa .................. 141 9.1 Birkeland’s Health....................................... 141 9.2 Marriage and Divorce ................................... 143 9.3 Sojourn in Egypt . ....................................... 145 9.4 DeathinTokyo......................................... 148 9.5 Many Friends . .......................................... 156 9.6 Birkeland’s Will......................................... 162 Part V: Birkeland’s Heritage .................................... 165 10 From Small Acorns........................................... 165 10.1 Science Education in Norway ............................ 166 10.2 Influence on Solar-Terrestrial Research.................... 167 11 In Memoriam ................................................ 175 11.1KristianBirkeland Research Fund ........................ 175 11.2 Birkeland Symposium................................... 176 CONTENTS vii 11.3 Birkeland Lecture Series ................................. 176 11.4 The Norwegian 200 Kroner Banknote ..................... 179 Appendix 1 Birkeland’s Scientific Publications .................... 181 Appendix 2 Archives and Unpublished Sources ................... 189 Olaf Devik’s Personal Archive ................................. 189 The Birkeland-Eyde Industrial Museum at Notodden............. 189 Norwegian Technical Museum in Oslo.......................... 190 The National Library Archive ................................. 191 Norsk Hydro Archive ......................................... 191 Sam Eyde Archive ........................................... 191 Norwegian Storting Archives .................................. 192 University of Oslo, Central Administration...................... 192 Stockholm Enskilda Banken Archives .......................... 192 Norwegian Academy of Science and Letters Archive ............. 192 Printed Sources from Norwegian Newspapers and Journals ....... 192 Biographies.................................................. 194 Appendix 3 Patents . ........................................... 195 Appendix 4 Letters . .......................................... 201 Letter: Birkeland to Kaja Geemuyden . ......................... 201 Extracts from Terada’s Diary Concerning Kristian Birkeland in May–June 1917 . .......................................... 203 Letter: TeradatoBirkeland(written in English). ................. 205 Letter: TeradatoBirkeland(written in English). ................. 206 Letter: NagaokatoBirkeland(written in English). ............... 207 Letter: TeradatoBirkeland(written in English). ................. 208 Letter: NagaokatoBirkeland(written in English).
Recommended publications
  • Spring-8 Highlights 2014
    Three‐way Meeting 2015 27th ‐28th Feb. 2015 SPring‐8 Highlights 2014 Photo by Shigeki Tsujimoto Masaki Takata RIKEN SPring‐8 Center 1 How SPring‐8 really works? What is benefits of Science? 2 It was important to map SPring‐8 in society as well as science community. 3 Overview • Building Brand • Expanding Cooperation • Increasing Awareness • Shaping Future 4 Building Brand • Tissue Engineering • Critical Materials Strategy • Quantum Nano Dynamics • SR Magnetism • Nano Applications 5 Tissue Engineering Cardiac Regenerative Nobel Laureate Therapy Using Cell Sheets S. Yamanaka Integration of iPSC‐cardiomyocytes in the Heart non‐invasive investigation of regional beating of cardiac muscle Prof. Yoshiki Sawa Dept. of Cardiovascular Surgery Osaka University iPSC‐CMs‐ transplanted heart day 14 Showing synchronized contraction of the iPSC‐CMs sham‐operated in the sheet. heart Arrows indicate timing of end diastole. SAXS: Regional beating of Rat heart CT‐1353 Accepted 12/20/2014 for publication in “Cell Transplantation” 6 Critical Materials Strategy Elements Strategy Initiative Center for Magnetic Materials (ESICMM) Smart Visualization for Domain Engineering Kazuhiro Hono A key tool to quest for Dy‐free Nd‐Fe‐B Permanent Magnets NIMS Fellow Director of Magnetic Materials Unit BL25SU: Soft X‐ray Soft X‐ray Nano Spectroscopy Beamline; BL25SU Nano Application Since 2014 7 Critical Materials Strategy Elements Strategy Initiative Center for Magnetic Materials (ESICMM) Micro Magnetic Simulation Concerted with SPring‐8 A key tool to quest for Dy‐free Nd‐Fe‐B Permanent Magnets Shinji Tsuneyuki University of Tokyo, Computational Materials Science Initiative Domain information upgrades a simulation technology. K‐Computer H. Sepehri-Amin et al., 8 Scripta Mater.
    [Show full text]
  • A Brief History of Magnetospheric Physics Before the Spaceflight Era
    A BRIEF HISTORY OF MAGNETOSPHERIC PHYSICS BEFORE THE SPACEFLIGHT ERA David P. Stern Laboratoryfor ExtraterrestrialPhysics NASAGoddard Space Flight Center Greenbelt,Maryland Abstract.This review traces early resea/ch on the Earth's aurora, plasma cloud particles required some way of magneticenvironment, covering the period when only penetratingthe "Chapman-Ferrarocavity": Alfv•n (1939) ground:based0bservationswerepossible. Observations of invoked an eleCtric field, but his ideas met resistance. The magneticstorms (1724) and of perturbationsassociated picture grew more complicated with observationsof with the aurora (1741) suggestedthat those phenomena comets(1943, 1951) which suggesteda fast "solarwind" originatedoutside the Earth; correlationof the solarcycle emanatingfrom the Sun's coronaat all times. This flow (1851)with magnetic activity (1852) pointed to theSun's was explainedby Parker's theory (1958), and the perma- involvement.The discovei-yof •solarflares (1859) and nent cavity which it producedaround the Earth was later growingevidence for their associationwith large storms named the "magnetosphere"(1959). As early as 1905, led Birkeland (1900) to proposesolar electronstreams as Birkeland had proposedthat the large magneticperturba- thecause. Though laboratory experiments provided some tions of the polar aurora refleCteda "polar" type of support;the idea ran into theoreticaldifficulties and was magneticstorm whose electric currents descended into the replacedby Chapmanand Ferraro's notion of solarplasma upper atmosphere;that idea, however, was resisted for clouds (1930). Magnetic storms were first attributed more than 50 years. By the time of the International (1911)to a "ringcurrent" of high-energyparticles circling GeophysicalYear (1957-1958), when the first artificial the Earth, but later work (1957) reCOgnizedthat low- satelliteswere launched, most of the importantfeatures of energy particlesundergoing guiding center drifts could the magnetospherehad been glimpsed, but detailed have the same effect.
    [Show full text]
  • Som Nær Sagt Ingen Anden» Sam Eyde (1866 –1940)
    TROND AASLAND «… som nær sagt ingen anden» Sam Eyde (1866 –1940) et er gått 1 50 år siden Sam Eyde ble født i Arendal, men vi starter i DFrankrike for 80 år siden, da han rundet de 70. I forkant av dagen gikk Eyde i filmstudio og leste inn et ungdomsdikt om en ung mann med hjemlengsel og kjærlighet til fedrelandet – en som «ønsker å komme til - bake en gang…» Det var som om han for andre gang befant seg på feil sted, denne gangen i et påtvunget eksil. Hans hilsen hjem til Norge ble også formidlet gjen - nom radioen, men den ble ikke tatt godt imot av alle. Strengt tatt flyttet han aldri tilbake, men i vår tid synes det å være bred enighet om at han er kommet hjem. Han står ganske stødig som vår viktigste gründer og industribygger, i alle fall i de første formende tiårene av forrige århundre. Han står slik både på grunn av og på tross av Sam Eyde. Kunne andre ha tatt en tilsvarende rolle? Vi skal være forsiktige med å legge det meste på noen individer. Historisk utvikling er alltid et samspill mellom tidens breie elver og manøvrene til farkostene ute på vannet. Hadde ikke Eyde kommet, kunne andre sett og grepet mulighetene og fått til noe rundt store norske fosser. Trolig ville vi fått se mer av utenlandske kapitalister og mindre av samarbeid og overføring av kunnskap og teknologi. Sammensetningen av industri ville ha vært annerledes. Tidsforløpet likeså. Hydros produksjon er det vanskelig å tenke seg uten det avgjør - 9 ende initiativet til Eyde og møtet med professor Birkeland.
    [Show full text]
  • Kristian Birkeland (1867 - 1917) the Almost Forgotten Scientist and Father of the Sun-Earth Connection
    Kristian Birkeland (1867 - 1917) the Almost Forgotten Scientist and Father of the Sun-Earth Connection PÅL BREKKE Norwegian Space Centre ISWI Workshop, Boston College, 31 July - 4 August 2017 The Young Kristian Birkeland Olaf Kristian Birkeland was born 13 December 1967. Early on Birkeland was interested in magnetism and already as a schoolboy he had bought his own magnet with his own money. He used the magnet for many surprising experiments and practical jokes - often irritating his teachers Birkeland’s Early Career Birkeland became a certificate teacher at the University of Kristiania at only 23 years old and graduated with top grades. In 1896 Birkeland was elected into the Norwegian Academy of Sciences at only 28 years old. Two years later he became a professor in Physics - quite unusual at that young age at that time (was called «the boy professor»). Photograph of Kristian Birkeland on Karl Johans Gate, (Oslo) in 1895 taken by student Carl Størmer, using a concealed camera. (source: UiO) Birkeland - Electromagnetic Waves Birkeland did laboratory experiments on electromagnetic waves in 1890 and first publication came in 1892 with some ground breaking results. In 1893 he focused on the energy transported by these waves. In 1895 Birkeland published his most important theoretical paper. He provided the first general solution of Maxwell’s equations for homogeneous isotropic media. First page of Birkeland's 1895 paper where he derived a general solution to Maxwell’s equations Birkeland - Cathode Rays In 1895 he began pioneer studies of cathode rays, a stream of electrons in a vacuum tube that occurs through high voltage passing between negative and positive charged electrodes.
    [Show full text]
  • Switching Relations: the Rise and Fall of the Norwegian Telecom Industry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Switching Relations The rise and fall of the Norwegian telecom industry by Sverre A. Christensen A dissertation submitted to BI Norwegian School of Management for the Degree of Dr.Oecon Series of Dissertations 2/2006 BI Norwegian School of Management Department of Innovation and Economic Organization Sverre A. Christensen: Switching Relations: The rise and fall of the Norwegian telecom industry © Sverre A. Christensen 2006 Series of Dissertations 2/2006 ISBN: 82 7042 746 2 ISSN: 1502-2099 BI Norwegian School of Management N-0442 Oslo Phone: +47 4641 0000 www.bi.no Printing: Nordberg The dissertation may be ordered from our website www.bi.no (Research - Research Publications) ii Acknowledgements I would like to thank my supervisor Knut Sogner, who has played a crucial role throughout the entire process. Thanks for having confidence and patience with me. A special thanks also to Mats Fridlund, who has been so gracious as to let me use one of his titles for this dissertation, Switching relations. My thanks go also to the staff at the Centre of Business History at the Norwegian School of Management, most particularly Gunhild Ecklund and Dag Ove Skjold who have been of great support during turbulent years. Also in need of mentioning are Harald Rinde, Harald Espeli and Lars Thue for inspiring discussion and com- ments on earlier drafts. The rest at the centre: no one mentioned, no one forgotten. My thanks also go to the Department of Innovation and Economic Organization at the Norwegian School of Management, and Per Ingvar Olsen.
    [Show full text]
  • Sam Eydes Kvinner
    RJUKAN-NOTODDEN INDUSTRIARV Sam Eyde og kvinnene Anne Haugen Wagn Kan ekteskapene og kvinnene i Sam Eydes liv bidra til å belyse industrigrunnleggerens personlighet? Og fork- lare hans karriere og nederlag? Uansett forteller disse sidene av Sam Eydes liv historien om borgerskapets mannssamfunn. Der kvinnene var underordnet mannen. Og der de fikk utfolde seg, enten som hore eller ma- donna. Ole Kristian Grimnes, som har skrevet biografien om Sam Eyde i 2001, skriver at Eyde var så altoppslukende opptatt av sitt arbeid at det gjorde han immun mot begivenheter og forandringer i privatlivet. Det er ikke stort å hente hos ektemannen for et studium av industrimannen, skriver Grimnes videre. Men, det burde være mulig å utdype forståelsen av Eyde som industrigründer og leder, ved å se nærmere på han som ektemann. Første ekteskapet 17.august 1895 giftet Sam Eyde seg med Ulla Mørner i Skeppholmskyrkan i Stockholm. Sam bar løytnants uni- form, hun var i hvit brudekjole med halvlangt slep, en liten utringning foran ved halsen og lange ermer. Etter noen hvetebrødsdager ved Saltsjøbaden, reiste de til Lubeck. Anna Ulrika ( Ulla ) ble født 13.juni 1873, som yngste datter av den svenske adelsmannen Carl Robert Stellan Mörner af Morlanda. Ved dåpen bad han noen i Eydefamilien om å være fadder, fordi kontakten her var allere- de etablert. Ullas far døde mindre enn 2 år seinere, men kontakten med Eyde-familien fortsatte. Mor til Ulla, Sally, ble alene med 6 mindreårige barn og måtte selge herregården. Men underbruket Marieberg ble beholdt, og Ulla vokste opp der. Sommeren 1891, da Ulla var 18 år, besøkte hun og moren eydene i Arendal.
    [Show full text]
  • Sam Eyde – Norsk Hydros Grunnlegger
    RJUKAN-NOTODDEN INDUSTRIARV Sam Eyde – Norsk Hydros grunnlegger Sam Eyde kom første gang til Notodden som 18-åring. Da er han ingeniørstudent og har skrevet seg inn i gjesteboka på Hotell Furuheim på Notodden. Og han kommer tilbake til Telemark. Fire år seinere, sommeren 1888, skriver han sitt navnetrekk sammen med tyske venner i besøksboka på Gaustatoppen. Eyde nøyer seg ikke med en signatur. Han tegner også inn Rjukanfossen og - til overmål – tegner han en bro med svevebane tvers over dalen! Det viktigste med turen til Rjukan var likevel at han også studerte Rjukanfossen. Eyde merket seg at det var voldsomme krefter i den fossen, og at den kunne brukes til noe…. Sam Eyde (1866-1940) ble født og vokste opp i Arendal, der hans far drev med shipping. Som barn likte han bedre å leike ved havna og klatre i riggene på seilskipene enn å fordype seg i skolearbeidet. Da han var 13 år, ble han tatt ut av skolen og mønstret på skoleskipet ”Nornen”. Han omtaler det selv som en slags dannelsesreise. En måte å bi voksen på. Den unge Sam fikk se verden og fikk erfaring og opplæring i det virkelige liv. Eyde skriver i sin selvbiografi at han på denne turen lærte seg tre viktige ting: Disiplin og vennskap med offiserene om bord - og at det var en verden utenfor Arendal. Sam fullførte gymnaset (videregående), avtjente verneplikten og ble kadett. Han søkte seg til det tekniske univer- sitetet i Charlottenburg, utenfor Berlin. Her ville han utdanne seg til ingeniør. Sam gjør det bra på studiene, han vinner en pris ved universitetet for sitt arbeid.
    [Show full text]
  • An Incomplete Bibliography of Publications in Historia Scientiarum (International Journal of the History of Science Society of Japan)
    An Incomplete Bibliography of Publications in Historia Scientiarum (International Journal of the History of Science Society of Japan) Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 27 December 2018 Version 1.03 Title word cross-reference $124.00 [Hij90]. $29.00 [Bur93a]. 3[+]1=8 [Hol03]. $49.95 [Yaj07]. 7 × 7 e `eme ieme th [Yam10]. 9 [Mur94]. [Gui86, Pen04, Yos81a]. [DP88].P [Ano94b]. ≈ n 2 2 [Pen04]. π [HKY89, Nak94a, Vol94]. π 3(1=8) [Mur92b]. i=1 xi = x [Ras94a]. × [Har87b]. 0 [Hig01a, Izu05, Miu03, Mor04b, Sat05, She06a, She06b]. 0-19-860665-6 [Sat05]. 0-19-927016-3 [Izu05]. 0-520-24607-1 [Yaj07]. 0-691-11445-5 [She06b]. 0-8018-8235-4 [She06a]. 0-86078-668-4 [Hig01a]. 000 [Sas81b]. 00FF [Yos82]. 02/06/2000 [Has01]. 1 [Kaw93a, Oka98, Yos98]. 10 [Høy03, Yos81c]. 10th [Suz81]. 11 [Hay94]. 12/02/1906 [Has01]. 1475/76 [Hig01b]. 1500 [Ito83]. 15073 [Mur05b]. 1 2 16th [Maa91]. 17 [Sat86, Sat87]. 1700 [Nak83]. 17th [Maa91, Oh14, Yin13]. 18.5cm [Har87b]. 1843 [Ito16]. 1847 [Nak00a]. 1847/48 [Nak00a]. 1880s [Kim08a]. 18th [Ano94b, Kaw11, Kob02, Lor86, Nag80, Oh14, Nak98, THI17]. 18th-century [Kob02]. 19 [Nis92]. 190F [Yos98]. 1920s [Bro07, Kan13, Kim08b]. 1930 [Yaj07]. 1930s [Bro89, Kan13]. 1940 [Fur97]. 1940s [Mat98, YW05]. 1950s [HR15, Yam09]. 1955 [Nis92]. 1960s [FH12].
    [Show full text]
  • Kristian Birkeland's Pioneering Investigations of Geomagnetic
    CMYK RGB Hist. Geo Space Sci., 1, 13–24, 2010 History of www.hist-geo-space-sci.net/1/13/2010/ Geo- and Space © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Access Open Sciences Advances in Science & Research Kristian Birkeland’s pioneering investigationsOpen Access Proceedings of geomagnetic disturbances Drinking Water Drinking Water A. Egeland1 and W. J. Burke2 Engineering and Science Engineering and Science 1University of Oslo, Norway Open Access Access Open Discussions 2Air Force Research Laboratory, USA Received: 11 February 2010 – Accepted: 15 March 2010 – Published: 12 April 2010 Discussions Earth System Earth System Abstract. More than 100 years ago Kristian Birkeland (1967–1917) addressed questions that had Science vexed sci- Science entists for centuries. Why do auroras appear overhead while the Earth’s magnetic field is disturbed? Are magnetic storms on Earth related to disturbances on the Sun? To answer these questions Birkeland devised Open Access Open terrella simulations, led coordinated campaigns in the Arctic wilderness, and then interpretedAccess Open hisData results in Data the light of Maxwell’s synthesis of laws governing electricity and magnetism. After analyzing thousands of magnetograms, he divided disturbances into 3 categories: Discussions 1. Polar elementary storms are auroral-latitude disturbances now called substorms. Social Social 2. Equatorial perturbations correspond to initial and main phases of magnetic storms. Open Access Open Geography Open Access Open Geography 3. Cyclo-median perturbations reflect enhanced solar-quiet currents on the dayside. He published the first two-cell pattern of electric currents in Earth’s upper atmosphere, nearly 30 years before the ionosphere was identified as a separate entity.
    [Show full text]
  • Setsuro Tamaru and Fritz Haber: Links Between Japan and Germany In
    Essay DOI: 10.1002/tcr.201402086 Setsuro Tamaru and Fritz Haber: Links THE CHEMICAL between Japan and Germany in Science RECORD and Technology Hideko Tamaru Oyama Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501 (Japan), Tel./Fax: (+81) 3-3985-2363, E-mail: [email protected] ABSTRACT: Setsuro Tamaru was my grandfather. He worked with Fritz Haber in Germany on researching the ammonia synthesis process and contributed substantially to the development of scientific research and education in Japan. Although I had never met him, I felt his existence while I grew up, since our house was built by him and had many artifacts brought back from Germany by my grandfather; e.g., a Bechstein upright piano upon which I practiced piano every day and Fritz Haber’s portrait with his handwritten message hung on the wall. This is an account of my grandfather’s life, concentrating on his relationship with Fritz Haber. This story goes back to a time more than a century ago. 1. Early Years in Japan (1879∼1908) Setsuro Tamaru (1879∼1944), shown in Figure 1, was born on November 1, 1879, in Morioka, a region in the northern part of the main island, Honshu, Japan. He was the fourth son of a former clansman of the Nambu clan, Juro (father, 1848∼1892), and Shin (mother, 1850∼1941). His father died when he was 12 years old so his eldest brother, Kinya,[1] sup- ported the big family (his mother, grandmother Koto, and six siblings)[2] by working as a schoolteacher.
    [Show full text]
  • Birkeland Currents and Dark Matter
    Issue 2 (April) PROGRESS IN PHYSICS Volume 14 (2018) Birkeland Currents and Dark Matter Donald E. Scott Dept. of Electrical Engineering (Retired), University of Massachusetts, Amherst, Massachusetts, USA E-mail: [email protected] A straight-forward application of basic electrical definitions and one of Maxwell’s di- vergence equations provide an extension of the Bessel function model of force-free, field-aligned currents (FAC). This extended model offers descriptions of the charge den- sity, electric-field strength, velocity profile, and voltage profile, each as a function of radial value, r, within the cross-section of the FAC structure. The resulting model ex- hibits an obvious correspondence with the results of the Marklund convection process in plasma filaments. Most importantly, it shows that observed stellar velocity profiles in galaxies are now accurately predicted without invocations of Dark Matter, WIMPs, or MACHOs. 1 Introduction to be of unlimited extent in length and have a circular cross- section, the model assumes no variation of either B or j in the Kristian Birkeland’s hypothesis [1] that Earth’s auroras are θ, or z directions. The mathematical results of this modeling powered by electric charges flowing from the Sun was shown process are: to be correct in the late 1960’s [2]. Since that time there has been a growing interest in the exact structure of those Bz(r) = Bz(0) J0(αr) ; (1) streams. What are the precise shapes and physical proper- ties of these currents that cascade down into Earth’s polar B (r) = B (0) J (αr) ; (2) regions? NASA calls them “magnetic flux-ropes”.
    [Show full text]
  • The EISCAT 3D Project in Norway: E3DN Kristian Birkeland's
    The EISCAT 3D Project in Norway: E3DN Cesar La Hoz*1, Kjellmar Oksavik2, Vasyl Belyey1 1 University of Tromsø, Department of Physics and Technology, NO-9037 Tromsø, Norway, [email protected], [email protected] 2 University of Bergen, Department of Physics and Technology, NO-5020 Bergen, Norway, [email protected] EISCAT 3D (E3D) is a project to build the next generation of incoherent scatter radars endowed with 3-dimensional scalar and vector capabilities that will replace the current EISCAT radars in Northern Scandinavia. One active (transmit- ting) site in Norway and four passive (receiving) sites in the Nordic countries will provide 3–D vector imaging capabil- ities by rapid scanning and multi-beam forming. The unprecedented flexibility of the solid-state transmitter with high duty-cycle, arbitrary wave-forming and polarisation and its pulsed power of 10 MW will provide unrivalled experimental capabilities to investigate the highly non-stationary and non-homogeneous state of the polar upper atmosphere. Aperture Synthesis Imaging Radar (ASIR) will to endow E3D with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scat- ter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. The Norwegian scientific programme is inspired by the pioneer polar scientist Kristian Birkeland (picture) and includes pressing questions on polar upper atmospheric research, among
    [Show full text]