The Genus Madurella: Molecular Identification and Epidemiology in Sudan

Total Page:16

File Type:pdf, Size:1020Kb

The Genus Madurella: Molecular Identification and Epidemiology in Sudan PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE The genus Madurella: Molecular identification and epidemiology in Sudan 1 2 3 2 Elhadi A. AhmedID *, Bakri Y. M. Nour , Adam D. Abakar , Samirah Hamid , Ahmed 4 5 5 6 A. Mohamadani , Mohamed DaffallaID , Mogahid Mahmoud , Hisham N. Altayb , Marie Desnos-Ollivier7, Sybren de Hoog8,9, Sarah A. Ahmed8,9,10 1 Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Gezira, Sudan, 2 Blue Nile National Institute for Communicable Diseases (BNNICD), University of Gezira, Sudan, 3 Department of Medical Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Sudan, 4 Department of Pathology, Faculty of Medicine, University of Gezira, Sudan, 5 Department of Surgery, Faculty of Medicine, University of Gezira, Sudan, 6 Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Saudi Arabia, 7 Institut Pasteur, Molecular Mycology Unit, National Reference Center for Invasive Mycoses and Antifungals, Paris, France, 8 Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands, 9 Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina a1111111111 Hospital, Nijmegen, The Netherlands, 10 Faculty of Medical Laboratory Sciences, University of Khartoum, a1111111111 Khartoum, Sudan a1111111111 a1111111111 * [email protected] a1111111111 Abstract Eumycetoma (mycotic mycetoma) is the fungal form of mycetoma, a subcutaneous infection OPEN ACCESS occurring in individuals living in endemic areas of the disease. The Sudan is hyperendemic Citation: Ahmed EA, Nour BYM, Abakar AD, Hamid for mycetoma, with the highest incidence being reported from Gezira State, Central Sudan. S, Mohamadani AA, Daffalla M, et al. (2020) The The present study was conducted at the Gezira Mycetoma Center and aimed to determine genus Madurella: Molecular identification and epidemiology in Sudan. PLoS Negl Trop Dis 14(7): the cause of black-grain eumycetoma in the state and describe its epidemiology. Black- e0008420. https://doi.org/10.1371/journal. grain specimens were collected during the surgical operation and direct detection of the pntd.0008420 causative agent was performed using M. mycetomatis species-specific PCR and ITS PCR Editor: Abdallah M. Samy, Faculty of Science, Ain followed by sequencing. Black-grain was reported from 93.3% of all confirmed mycetoma Shams University (ASU), EGYPT cases (n = 111/119), with a prevalence in young males. Of the 91 samples subjected to Received: February 12, 2020 direct PCR, 90.1% (n = 82) gave positive results. The predominant species (88.2%) was Accepted: May 23, 2020 Madurella mycetomatis. One sample was identified as M. fahalii, one as M. tropicana, and one matched the phytopathogenic species Sphaerulina rhododendricola. The highest Published: July 30, 2020 endemic zones were Southern Gezira (76.6%) and Northern Sinnar (23.4%). The study con- Copyright: © 2020 Ahmed et al. This is an open firmed that direct molecular detection on grains provides rapid and specific diagnosis of access article distributed under the terms of the Creative Commons Attribution License, which agents of eumycetoma. permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All relevant data are Author summary within the manuscript and its Supporting Information files. Eumycetoma is a neglected fungal disease endemic in Africa, India, and Latin America. Funding: The authors received no specific funding Black-grain eumycetoma is the most common type in Africa and is mainly caused by for this work. Madurella spp. The Sudan, and in particular Gezira State, central Sudan is hyperendemic for black-grain eumycetoma. Patients with this type of mycetoma are treated with surgery Competing interests: The authors have declared that no competing interests exist. in combination with antifungal therapy. In this study, we collected surgical biopsies from PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008420 July 30, 2020 1 / 15 PLOS NEGLECTED TROPICAL DISEASES Madurella species in Sudan patients attending Gezira Mycetoma Center to directly identify the etiology of black-grain eumycetoma in this state. We also studied the epidemiology of the disease based on the demography of the patients' population. Our result showed that the highest endemic regions were Southern Gezira (76.6%) and Northern Sinnar (23.4%). By applying direct PCR and sequencing we confirmed that the most common etiology of the disease is Madurella mycetomatis (88.2%). In addition, we found one case of M. fahalii and the first Sudanese case of M. tropicana and Sphaerulina rhododendricola. Introduction Black-grain mycetoma is caused exclusively by fungi, and to date around 23 species have been reported as being responsible for this infection [1, 2, 3]. Agents of black grain mycetoma are affiliated to three orders of Ascomycota, viz. Pleosporales, Sordariales and Chaetothyriales [1]. Although eight species of Chaetothyriales, belonging to Exophiala and Cladophialophora have been incriminated in mycetoma, members of this order are less frequent. The largest diversity of black-grain agents is found in Pleosporales: ten species belonging to eight genera have been reported [1,4, 5, 6]. In contrast, Sordariales harbor only a small number of species able to cause mycetoma, but among these are the predominant agents worldwide in the genus Madurella [7, 8]. Irrespective of phylogenetic positions, all agents of black-grain mycetoma produce similar clinical features, i.e. progressive tumefaction, sinuses, and black grains in discharge or embed- ded in tissue [9]. For this reason, it is difficult to differentiate the 23 species histologically [1,10]. After culturing of the grains, members of Chaetothyriales produce dark olivaceous black colonies and microscopically yeast cells or more or less characteristic conidia [4]. Species of Pleosporales produce dark grey or olive green velvety or woolly colonies, but clinical strains may remain sterile or produce ascomata or conidiomata with delay [6, 11]. Members of Sor- dariales produce brownish to dark yellow or grey colonies which are mostly cerebriform and glabrous or with very short aerial mycelium. Sordariales species usually remain sterile, only chlamydospores or large swollen hyphae being observed [4]. Culture differences can be used for approximate differentiation of agents of the three orders, while identification down to the species level requires molecular techniques [5, 10, 12]. The importance of species identification in black-grain eumycetoma infection has been indicated in several studies [10, 11, 12, 13]. The pathogens differ in susceptibility to antifungal agents, as well as in their epidemiology [12, 14]. For example, in Pleosporales, Medicopsis romeroi showed low susceptibility to several antifungal agents including amphotericin B, flu- conazole, itraconazole and caspofungin [14, 15, 16]. In addition, differences are noted between the closely interrelated species of Madurella in their susceptibility to the main drug used for treating eumycetoma, itraconazole. While M. mycetomatis, the predominant species world- wide, is inhibited by low concentration of itraconazole, M. fahalii has high Minimum Inhibi- tory Concentrations (MICs) to this drug [12, 17]. Of note, the epidemiology of the two species may be overlapping, as both species are found in Sudan [12, 18]. Sudan is a hyperendemic region for mycetoma and it is considered as the disease homeland [2, 19]. The incidence of newly diagnosed cases per year in the Mycetoma Research Centre in Khartoum is 355 [18]. Of the 6,792 patients reported with myceoma in this center, 2,476 patients (37%) were from Gezira State, Central Sudan [18]. Therefore, in 2012, the Gezira Mycetoma Center was established to provide medical care for mycetoma patients in that region. During the period January 2013 to December 2016, a total of 1,654 patients were seen PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008420 July 30, 2020 2 / 15 PLOS NEGLECTED TROPICAL DISEASES Madurella species in Sudan at the Gezira Mycetoma Center; of them, 584 underwent surgery, including amputation in 71 patients (12.2%). Diagnoses were made by clinical evaluation, imaging, fine-needle aspiration cytology and histology [20]. Although culture and molecular identification of the causative pathogen is considered the gold standard for diagnosis of mycetoma, culturing is rarely performed even in highly special- ized centers [10, 5]. One of the reasons is that mycetoma agents require several weeks to grow, and risks of absence of growth or contamination are very high [10, 21]. Recently, culture-free methods have been introduced for direct detection of agents of eumycetoma in clinical materi- als. These include recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and direct PCR amplification followed by sequencing [22]. Despite the high accuracy of these methods, none of them has been installed for routine diagnostics in endemic regions. In the present study, we applied direct PCR and sequencing for diagnosis of black-grain eumycetoma cases seen at the Gezira Mycetoma Center. Since M. mycetomatis is known as the main agent of mycetoma in Sudan, we also applied species-specific PCR using primers described by Ahmed et al. [25]. Furthermore, we studied the epidemiology of the disease in the Gezira State based on stored information
Recommended publications
  • Revision of Agents of Black-Grain Eumycetoma in the Order Pleosporales
    Persoonia 33, 2014: 141–154 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684744 Revision of agents of black-grain eumycetoma in the order Pleosporales S.A. Ahmed1,2,3, W.W.J. van de Sande 4, D.A. Stevens 5, A. Fahal 6, A.D. van Diepeningen 2, S.B.J. Menken 3, G.S. de Hoog 2,3,7 Key words Abstract Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the pres- ence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the Madurella orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of mycetoma pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackin­ Pleosporales nonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema taxonomy larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large Trematosphaeriaceae (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and transla- tion elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseu­ dochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N.
    [Show full text]
  • The Genus Madurella
    The genus Madurella: Molecular identification and epidemiology in Sudan Elhadi Ahmed, Bakri Nour, Adam Abakar, Samirah Hamid, Ahmed Mohamadani, Mohamed Daffalla, Mogahid Mahmoud, Hisham Altayb, Marie Desnos-Ollivier, Sybren de Hoog, et al. To cite this version: Elhadi Ahmed, Bakri Nour, Adam Abakar, Samirah Hamid, Ahmed Mohamadani, et al.. The genus Madurella: Molecular identification and epidemiology in Sudan. PLoS Neglected Tropical Diseases, Public Library of Science, 2020, 14 (7), pp.e0008420. 10.1371/journal.pntd.0008420. pasteur- 03243542 HAL Id: pasteur-03243542 https://hal-pasteur.archives-ouvertes.fr/pasteur-03243542 Submitted on 31 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE The genus Madurella: Molecular identification and epidemiology in Sudan 1 2 3 2 Elhadi A. AhmedID *, Bakri Y. M. Nour , Adam D. Abakar , Samirah Hamid , Ahmed 4 5 5 6 A. Mohamadani , Mohamed DaffallaID , Mogahid Mahmoud , Hisham
    [Show full text]
  • Monograph on Dematiaceous Fungi
    Monograph On Dematiaceous fungi A guide for description of dematiaceous fungi fungi of medical importance, diseases caused by them, diagnosis and treatment By Mohamed Refai and Heidy Abo El-Yazid Department of Microbiology, Faculty of Veterinary Medicine, Cairo University 2014 1 Preface The first time I saw cultures of dematiaceous fungi was in the laboratory of Prof. Seeliger in Bonn, 1962, when I attended a practical course on moulds for one week. Then I handled myself several cultures of black fungi, as contaminants in Mycology Laboratory of Prof. Rieth, 1963-1964, in Hamburg. When I visited Prof. DE Varies in Baarn, 1963. I was fascinated by the tremendous number of moulds in the Centraalbureau voor Schimmelcultures, Baarn, Netherlands. On the other hand, I was proud, that El-Sheikh Mahgoub, a Colleague from Sundan, wrote an internationally well-known book on mycetoma. I have never seen cases of dematiaceous fungal infections in Egypt, therefore, I was very happy, when I saw the collection of mycetoma cases reported in Egypt by the eminent Egyptian Mycologist, Prof. Dr Mohamed Taha, Zagazig University. To all these prominent mycologists I dedicate this monograph. Prof. Dr. Mohamed Refai, 1.5.2014 Heinz Seeliger Heinz Rieth Gerard de Vries, El-Sheikh Mahgoub Mohamed Taha 2 Contents 1. Introduction 4 2. 30. The genus Rhinocladiella 83 2. Description of dematiaceous 6 2. 31. The genus Scedosporium 86 fungi 2. 1. The genus Alternaria 6 2. 32. The genus Scytalidium 89 2.2. The genus Aurobasidium 11 2.33. The genus Stachybotrys 91 2.3. The genus Bipolaris 16 2.
    [Show full text]
  • New Species of Madurella, Causative Agents of Black-Grain Mycetoma
    New Species of Madurella, Causative Agents of Black-Grain Mycetoma G. Sybren de Hoog,a,b,c,d Anne D. van Diepeningen,a El-Sheikh Mahgoub,e and Wendy W. J. van de Sandef Centraalbureau voor Schimmelcultures KNAW Fungal Biodiversity Centre, Utrecht, The Netherlandsa; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlandsb; Peking University Health Science Center, Research Center for Medical Mycology, Beijing, Chinac; Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Chinad; Mycetoma Research Centre, University of Khartoum, Khartoum, Sudane; and Erasmus Medical Center, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlandsf Downloaded from A new species of nonsporulating fungus, isolated in a case of black-grain mycetoma in Sudan, is described as Madurella fahalii. The species is characterized by phenotypic and molecular criteria. Multigene phylogenies based on the ribosomal DNA (rDNA) internal transcribed spacer (ITS), the partial ␤-tubulin gene (BT2), and the RNA polymerase II subunit 2 gene (RPB2) indicate that M. fahalii is closely related to Madurella mycetomatis and M. pseudomycetomatis; the latter name is validated according to the rules of botanical nomenclature. Madurella ikedae was found to be synonymous with M. mycetomatis. An isolate from Indo- nesia was found to be different from all known species based on multilocus analysis and is described as Madurella tropicana. Madurella is nested within the order Sordariales, with Chaetomium as its nearest neighbor. Madurella fahalii has a relatively low optimum growth temperature (30°C) and is less susceptible to the azoles than other Madurella species, with voriconazole http://jcm.asm.org/ and posaconazole MICs of 1 ␮g/ml, a ketoconazole MIC of 2 ␮g/ml, and an itraconazole MIC of >16 ␮g/ml.
    [Show full text]
  • Weed Seeds As Nutritional Resources for Soil Ascomycota and Characterization of Specific Associations Between Plant and Fungal Species
    Biol Fertil Soils (2008) 44:763–771 DOI 10.1007/s00374-007-0259-x ORIGINAL PAPER Weed seeds as nutritional resources for soil Ascomycota and characterization of specific associations between plant and fungal species Joanne C. Chee-Sanford Received: 20 April 2007 /Revised: 14 November 2007 /Accepted: 15 November 2007 /Published online: 11 December 2007 # Springer-Verlag 2007 Abstract Current interest in biological-based management saprophytic microbes, given the extant populations can of weed seed banks in agriculture furthers the need to overcome intrinsic seed defenses against microbial antag- understand how microorganisms affect seed fate in soil. onism. Further, weed species-specific associations may Many annual weeds produce seeds in high abundance; their occur with certain fungi, with nutritional benefits conferred dispersal presenting ready opportunity for interactions with to microorganisms that may not always result in seed soil-borne microorganisms. In this study, we investigated biodeterioration. seeds of four common broadleaf weeds, velvetleaf (Abutilon theophrasti), woolly cupgrass (Eriochloa villosa), Pennsyl- Keywords Weed seed bank . Seeds . Fungi . Seed decay. vania smartweed (Polygonum pensylvanicum), and giant Seed-microbe association ragweed (Ambrosia trifida), for potential as sources of carbon nutrition for soil fungi. Seeds, as the major source of carbon in an agar matrix, were exposed to microbial Introduction populations derived from four different soils for 2 months. Most seeds were heavily colonized, and the predominant Weed infestations are ranked as the greatest problem in 18S rRNA gene sequences cloned from these assemblages agricultural systems (Aref and Pike 1998), causing crop were primarily affiliated with Ascomycota. Further, certain yield losses (estimated at 10% in the USA) that impact fungi corresponded to weed species, regardless of soil grower profitability.
    [Show full text]
  • Soil Fungal Community Structure Changes in Response to Different Long-Term Fertilization Treatments in a Greenhouse Tomato Monocropping System
    Tech Science Press DOI: 10.32604/phyton.2021.014962 ARTICLE Soil Fungal Community Structure Changes in Response to Different Long-Term Fertilization Treatments in a Greenhouse Tomato Monocropping System Xiaomei Zhang, Junliang Li and Bin Liang* College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China *Corresponding Author: Bin Liang. Email: [email protected] Received: 11 November 2020 Accepted: 09 January 2021 ABSTRACT Greenhouse vegetable cultivation (GVC) is an example of intensive agriculture aiming to increase crop yields by extending cultivation seasons and intensifying agricultural input. Compared with cropland, studies on the effects of farming management regimes on soil microorganisms of the GVC system are rare, and our knowledge is lim- ited. In the present study, we assessed the impacts of different long-term fertilization regimes on soil fungal com- munity structure changes in a greenhouse that has been applied in tomato (Solanum lycopersicum L.) cultivation for 11 consecutive years. Results showed that, when taking the non-fertilizer treatment of CK as a benchmark, both treatments of Conventional chemical N (CN) and Organic amendment only (MNS) significantly decreased the fungal richness by 16%–17%, while the Conventional chemical N and straw management (CNS) restored soil biodiversity at the same level. Saprotroph and pathotroph were the major trophic modes, and the abundance of the pathotroph fungi in treatment of CNS was significantly lower than those in CK and CN soils. The CNS treat- ment has significantly altered the fungal composition of the consecutive cropping soils by reducing the pathogens, e.g., Trichothecium and Lecanicillium, and enriching the plant-beneficial, e.g., Schizothecium.
    [Show full text]
  • Molecular Taxonomy, Origins and Evolution of Freshwater Ascomycetes
    Fungal Diversity Molecular taxonomy, origins and evolution of freshwater ascomycetes Dhanasekaran Vijaykrishna*#, Rajesh Jeewon and Kevin D. Hyde* Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China Vijaykrishna, D., Jeewon, R. and Hyde, K.D. (2006). Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Diversity 23: 351-390. Fungi are the most diverse and ecologically important group of eukaryotes with the majority occurring in terrestrial habitats. Even though fewer numbers have been isolated from freshwater habitats, fungi growing on submerged substrates exhibit great diversity, belonging to widely differing lineages. Fungal biodiversity surveys in the tropics have resulted in a marked increase in the numbers of fungi known from aquatic habitats. Furthermore, dominant fungi from aquatic habitats have been isolated only from this milieu. This paper reviews research that has been carried out on tropical lignicolous freshwater ascomycetes over the past decade. It illustrates their diversity and discusses their role in freshwater habitats. This review also questions, why certain ascomycetes are better adapted to freshwater habitats. Their ability to degrade waterlogged wood and superior dispersal/ attachment strategies give freshwater ascomycetes a competitive advantage in freshwater environments over their terrestrial counterparts. Theories regarding the origin of freshwater ascomycetes have largely been based on ecological findings. In this study, phylogenetic analysis is used to establish their evolutionary origins. Phylogenetic analysis of the small subunit ribosomal DNA (18S rDNA) sequences coupled with bayesian relaxed-clock methods are used to date the origin of freshwater fungi and also test their relationships with their terrestrial counterparts.
    [Show full text]
  • Bacillus Rhizosphaerae and Streptomyces Cacaoi
    NNT : 2017SACLS097 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A L’UNIVERSITE PARIS-SUD ECOLE DOCTORALE N° 567 - Sciences du Végétal Spécialité de doctorat : Biologie Par Zaid Shaker Naji AL-RUBAIEE Microorganisms, flight, reproduction and predation in birds Thèse présentée et soutenue à Orsay, le 28 Avril 2017 : Composition du Jury : Dr. Tatiana Giraud ESE, Université Paris Saclay, FRANCE Président Dr. Marcel Lambrechts CEFE, Montpellier, FRANCE Rapporteur Pr. Marion Petrie Université de Newcastle, ROYAUME-UNI Rapporteur Pr. Juan J. Soler CSIC, Almeria, ESPAGNE Examinateur Dr. Anders Møller ESE, Université Paris Saclay, FRANCE Directeur de thèse Title Microorganisms, flight, reproduction and predation in birds Abstract The fitness costs that macro- and micro-parasites impose on hosts can be explained by three main factors: (1) Hosts use immune responses against parasites to prevent or control infection. Immune responses require energy and nutrients to produce and/or activate immune cells and immunoglobulins, and that is costly, causing trade-offs against other physiological processes like growth or reproduction. (2) The host’s metabolic rate can be increased because tissue damage and subsequent repair from infection caused by parasite may be costly. (3) The metabolic rate of hosts may increase and hence also increase their resource requirements. Competition between macro- parasites and hosts may deprive resources from host. Birds are hosts for many symbionts, some of them parasitic, that could decrease the fitness of their hosts. There is huge diversity in potential parasites carried in a bird’s plumage and some can cause infection. Nest lining feathers are chosen and transported by adult birds including barn swallows Hirundo rustica to their nests, implying that any heterogeneity in abundance and diversity of microorganisms on feathers in nests must arise from feather preferences.
    [Show full text]
  • Descriptions of Medical Fungi
    DESCRIPTIONS OF MEDICAL FUNGI THIRD EDITION (revised November 2016) SARAH KIDD1,3, CATRIONA HALLIDAY2, HELEN ALEXIOU1 and DAVID ELLIS1,3 1NaTIONal MycOlOgy REfERENcE cENTRE Sa PaTHOlOgy, aDElaIDE, SOUTH aUSTRalIa 2clINIcal MycOlOgy REfERENcE labORatory cENTRE fOR INfEcTIOUS DISEaSES aND MIcRObIOlOgy labORatory SERvIcES, PaTHOlOgy WEST, IcPMR, WESTMEaD HOSPITal, WESTMEaD, NEW SOUTH WalES 3 DEPaRTMENT Of MOlEcUlaR & cEllUlaR bIOlOgy ScHOOl Of bIOlOgIcal ScIENcES UNIvERSITy Of aDElaIDE, aDElaIDE aUSTRalIa 2016 We thank Pfizera ustralia for an unrestricted educational grant to the australian and New Zealand Mycology Interest group to cover the cost of the printing. Published by the authors contact: Dr. Sarah E. Kidd Head, National Mycology Reference centre Microbiology & Infectious Diseases Sa Pathology frome Rd, adelaide, Sa 5000 Email: [email protected] Phone: (08) 8222 3571 fax: (08) 8222 3543 www.mycology.adelaide.edu.au © copyright 2016 The National Library of Australia Cataloguing-in-Publication entry: creator: Kidd, Sarah, author. Title: Descriptions of medical fungi / Sarah Kidd, catriona Halliday, Helen alexiou, David Ellis. Edition: Third edition. ISbN: 9780646951294 (paperback). Notes: Includes bibliographical references and index. Subjects: fungi--Indexes. Mycology--Indexes. Other creators/contributors: Halliday, catriona l., author. Alexiou, Helen, author. Ellis, David (David H.), author. Dewey Number: 579.5 Printed in adelaide by Newstyle Printing 41 Manchester Street Mile End, South australia 5031 front cover: Cryptococcus neoformans, and montages including Syncephalastrum, Scedosporium, Aspergillus, Rhizopus, Microsporum, Purpureocillium, Paecilomyces and Trichophyton. back cover: the colours of Trichophyton spp. Descriptions of Medical Fungi iii PREFACE The first edition of this book entitled Descriptions of Medical QaP fungi was published in 1992 by David Ellis, Steve Davis, Helen alexiou, Tania Pfeiffer and Zabeta Manatakis.
    [Show full text]
  • Revision of Agents of Black-Grain Eumycetoma in the Order Pleosporales
    Persoonia 33, 2014: 141–154 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684744 Revision of agents of black-grain eumycetoma in the order Pleosporales S.A. Ahmed1,2,3, W.W.J. van de Sande 4, D.A. Stevens 5, A. Fahal 6, A.D. van Diepeningen 2, S.B.J. Menken 3, G.S. de Hoog 2,3,7 Key words Abstract Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the pres- ence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the Madurella orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of mycetoma pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackin­ Pleosporales nonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema taxonomy larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large Trematosphaeriaceae (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and transla- tion elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseu­ dochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N.
    [Show full text]
  • Cell Wall Glucans of Fungi. a Review T ⁎ José Ruiz-Herrera , Lucila Ortiz-Castellanos
    The Cell Surface 5 (2019) 100022 Contents lists available at ScienceDirect The Cell Surface journal homepage: www.journals.elsevier.com/the-cell-surface Cell wall glucans of fungi. A review T ⁎ José Ruiz-Herrera , Lucila Ortiz-Castellanos Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Gto. Mexico ARTICLE INFO ABSTRACT Keywords: Glucans are the most abundant polysaccharides in the cell walls of fungi, and their structures are highly variable. Alpha glucans Accordingly, their glucose moieties may be joined through either or both alpha (α) or beta (β) linkages, they are Beta glucans either lineal or branched, and amorphous or microfibrillar. Alpha 1,3 glucans sensu strictu (pseudonigerans) are Fungi the most abundant alpha glucans present in the cell walls of fungi, being restricted to dikarya. They exist in the Cell wall form of structural microfibrils that provide resistance to the cell wall. The structure of beta glucans ismore Phylogenetic analyses complex. They are linear or branched, and contain mostly β 1,3 and β 1,6 linkages, existing in the form of microfibrils. Together with chitin they constitute the most important structural components of fungal cellwalls. They are the most abundant components of the cell walls in members of all fungal phyla, with the exception of Microsporidia, where they are absent. Taking into consideration the importance of glucans in the structure and physiology of the fungi, in the present review we describe the following aspects of these polysaccharides: i) types and distribution of fungal glucans, ii) their structure, iii) their roles, iv) the mechanism of synthesis of the most important ones, and v) the phylogentic relationships of the enzymes involved in their synthesis.
    [Show full text]
  • Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumyctoma
    Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumyctoma G. Sybren de Hoog1,2,3,4, Sarah A. Ahmed1,2,5*, Mohammad J. Najafzadeh6, Deanna A. Sutton7, Maryam Saradeghi Keisari1, Ahmed H. Fahal8, Ursala Eberhardt1, Gerard J. Verkleij1, Lian Xin9, Benjamin Stielow1, Wendy W. J. van de Sande10 1 CBS Centraalbureau voor Schimmelcultures, KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, 2 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands, 3 Department of Dermatology, the Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China, 4 Peking University Health Science Center, Research Center for Medical Mycology, Beijing, People’s Republic of China, 5 Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan, 6 Department of Parasitology and Mycology, and Cancer Molecular Pathology Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, 7 Fungus Testing Laboratory, Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 8 Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan, 9 Department of Dermatology and Venereology, Union Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan, People’s Republic of China, 10 Erasmus MC, Department of Medical Microbiology and Infectious Diseases, Rotterdam, Netherlands Abstract Eumycetoma is a traumatic fungal infection in tropical and subtropical areas that may lead to severe disability. Madurella mycetomatis is one of the prevalent etiologic agents in arid Northeastern Africa. The source of infection has not been clarified. Subcutaneous inoculation from plant thorns has been hypothesized, but attempts to detect the fungus in relevant material have remained unsuccessful.
    [Show full text]