Annals of Botany 111: 337–345, 2013 doi:10.1093/aob/mcs295, available online at www.aob.oxfordjournals.org VIEWPOINT Filial mistletoes: the functional morphology of moss sporophytes David Haig* Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Downloaded from * E-mail
[email protected] Received: 10 July 2012 Revision requested: 18 September 2012 Accepted: 19 November 2012 Published electronically: 30 December 2012 † Background A moss sporophyte inherits a haploid set of genes from the maternal gametophyte to which it is attached and another haploid set of genes from a paternal gametophyte. Evolutionary conflict is expected between http://aob.oxfordjournals.org/ genes of maternal and paternal origin that will be expressed as adaptations of sporophytes to extract additional resources from maternal gametophytes and adaptations of maternal gametophytes to restrain sporophytic demands. † Interpretation The seta and stomata of peristomate mosses are interpreted as sporophytic devices for increasing nutrient transfer. The seta connects the foot, where nutrients are absorbed, to the developing capsule, where nutri- ents are needed for sporogenesis. Its elongation lifts stomata of the apophysis above the boundary layer, into the zone of turbulent air, thereby increasing the transpirational pull that draws nutrients across the haustorial foot. The calyptra is interpreted as a gametophytic device to reduce sporophytic demands. The calyptra fits tightly over the intercalary meristem of the sporophytic apex and prevents lateral expansion of the meristem. While at Ernst Mayr Library of the Museum Comp Zoology, Harvard University on September 16, 2015 intact, the calyptra delays the onset of transpiration.