Bryophyte Divisions • Three Divisions –Hepatophyta (Liverworts) –Anthocerophyta (Hornworts) –Bryophyta (Mosses)

Total Page:16

File Type:pdf, Size:1020Kb

Bryophyte Divisions • Three Divisions –Hepatophyta (Liverworts) –Anthocerophyta (Hornworts) –Bryophyta (Mosses) Bryophyte Divisions • Three divisions –Hepatophyta (liverworts) –Anthocerophyta (hornworts) –Bryophyta (mosses) botit.botany.wisc.edu Beatific Bryophytes nobuosubaru.blogzine.jp Seta www.hiddenforest.co.nz Common Characteristics Homospory • Motile sperm • All bryophytes homosporous • Gametophyte thallus most prominent • Produce 1 kind of spore generation, not sporophyte • Spore develops into gametophyte – Thallus = plant tissue undifferentiated into a • Gametophyte produces both antheridia leaf, stem or root (sperm) and archegonia (eggs) • Most leaves lack cuticle – For absorption • No true leaves, stems or roots – General lack of vascular tissue – But see mosses, … 1 Bryophyte Phylogenies But Not a Natural Group! Vascular LiverwortMoss Hornwort plants Vascular • Paraphyletic Hornwort Liverwort Moss plants – Some, but not all, descendents of a common ancestor – In other words, what other people thought was correct was, in fact, wrong Vascular Liverwort Hornwort Moss plants – Based on an old taxonomy Vascular MossHornwort Liverwort plants Rhizoids sterile Antheridia jacket • Roots – Absorption – Anchorage fertile – Vascular tissue cells • Rhizoids (sperm) – Anchorage – Minimal or no absorption – No vascular tissue! • Rhizomes – Underground stem – Vascularized, with stem (not root) pattern 2 Archegonia Hornworts •Simplest gametophyte of all bryophytes •Small, flat thallus sporophyte neck gametophyte egg cell venter Sporophyte Sporophyte s • Contains true stomata p Sporangium o – Gas exchange (capsule) r o • Under favorable conditions may outlive p h gametophyte Foot y – Foot acts as root t e – Conducting tissue may develop at Gametophyte sporangium base •Foot supplies nutrients via transfer cells – Unusual condition of free-living •Embedded in gametophyte sporophyte! 3 Anthoceros Hornwort Spermatozoid Capsule splits (sporangium) Liverworts Liverworts Using Marchantia as an example • Gametophyte often ribbon-like – Thallose or leafy • Rhizoids • Sporangia with 4 valves • Capsule with elaters – Specialized, thickened cells – Dispersal • Examples: Riccia & Marchantia • Gametangia buried in deep, lengthwise depressions on upper surface of thallus 4 Sexual reproduction: Asexual reproduction Archegoniophores • Marchantia is dioecious (separate male & female plants) •Form on upper surface. •Contain gemmae (small green disks of tissue) Archegoniophore: structure bearing archegonia •Raindrops break them free of cup, & these can turn into gametophytes NOT sporophyte tissue!!!! Marchantia Sporophyte Marchantia Antheridiophores Antheridiophore: structure bearing antheridia 5 Spermatozoid Marchantia Life Cycle Mosses Bryophyta: Mosses 3 classes www.kib.ac.cn sporophyte • Andreaeopsida – Lantern, Granite mosses gametophyte Andreaea • Sphagnopsida – Peat mosses Maire Smith Sphagnum • Bryopsida – True mosses Polytrichum 6 Gametophytes Protonemal Phase • 3 Phases – Protonemal phase • Creeping, filamentous – Bud phase phase – Leafy phase (“phyllids”) • Spores initially dormant – Water + light cause growth – Protonema comes out of spore – Growth is directed towards red light Bud Phase Vascular Plants? • Some protonemal cells • Some mosses have hydroids & leptoids develop into a mass of • Not the same as xylem & phloem cells called a bud • One bud cell functions as the tip of a caulid, controlling direction of further cell division • Each bud develops into a mature gametophyte • Rhizoids grow downward from bud 7 Hydroids Leptoids • Hydroids have no lignin • Primitive sieve elements? • Very slow translocation of water • Degenerate, inactive nuclei • Limited distribution in plant • Many plasmodesmata in end walls • Mosses can remain dry for a long time, – Plasmodesmata connect cells yet come back to life when wetted • Nearby parenchyma tissue may act as – Up to 20 years in drought-tolerant species, companion cells yet come back to life within 4-24 hours! – Details when we cover anatomy – Try it! Get some moss, let it dry for a few – Companion cells (higher plants) help weeks or longer, then wet it load/unload sugars, etc. Asexual reproduction Sexual Reproduction • Gemma cups (splash cups) • Gametangia produced at main caulid apex • Monoecious or dioecious • Clonal • Apparent independent of light – Protonema can produce more – Soil pH, air temp., etc. buds • Antheridial heads • Phyllid tissue in wet soil – Antheridia elongate may produce protonemal – Outer sterile jacket usually contains chloroplasts strands – Sperm have 2 flagella • Rhizoids can produce buds • Archegonial heads. (sometimes) – Often retain a layer of water (phyllids aid in this) – Any sperm that land can swim on in 8 Moss Sporophyte Moss Sporophyte • Foot, seta and capsule • Mature seta and capsules contain: • Old archegonium increases in size, – epidermis of cuticle becomes the calyptra – stomata – Acts as temporary – thick-walled steroids (small, thick-walled protective covering over parenchyma cells) sporangium – a cortex region • Operculum covers – central strand of conducting tissue sporangium opening • Can produce 10-50% of • Up to 50 million spores photosynthesis needs per sporangium – Rest from gametophyte Dispersal: Peristome Moss Life Cycle • Calyptra falls off • Operculum shed • Peristome teeth attached to annulus peristome teeth annulus 9 What good is it? Sphagnum • Sphagnum have large, empty, clear cells in epidermis that fill with water (via a pore) & serve as reservoir • Worldwide carbon dioxide buffer – High CO2 levels, take in more – Low levels, take in less • Environmental indicators • WWI wound dressing What about ecological indicators? – Antiseptic & absorbent • Peat bogs cover ~ 1% earth’s surface – Half size USA! G.Chandler Various Moss Structures Sphagnum bog (Tierra del Fuego) 10.
Recommended publications
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • A Revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1
    Revision of Schoenobryum 147 Tropical Bryology 24: 147-159, 2003 A revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1 Brian J. O’Shea 141 Fawnbrake Avenue, London SE24 0BG, U.K. Abstract. The nine species and two varieties of Schoenobryum reported for Africa were investigated, and no characters were found that uniquely identified any of the taxa to be other than the pantropical Schoenobryum concavifolium. The following nine names become new synonyms of S. concavifolium: Cryphaea madagassa, C. subintegra, Acrocryphaea robusta, A. latifolia, A. subrobusta, A. tisserantii, A. latifolia var. microspora, A. plicatula and A. subintegra var. idanreense; a lectotype is selected for Acrocryphaea latifolia var. microspora P.de la Varde. INTRODUCTION as the majority have not been examined since the type description, and many have never been A recent checklist of Sub-Saharan Africa illustrated. (O’Shea, 1999) included nine species and two varieties of Schoenobryum, most of quite limited The purpose of this paper is to provide an distribution. Recent collecting in both Malawi overview of the genus worldwide, and to review (O’Shea et al., 2001) and Uganda (Wigginton et the taxonomic position of the African taxa. al., 2001) has shown the genus to be not uncommon, although there was only one CRYPHAEACEAE SCHIMP. 1856. previously published collection from the two countries (O’Shea, 1993). Apart from one Cryphaeaceae Schimp., Coroll. Bryol. Eur. 97. African taxon occurring in nine countries, the 1856 [‘1855’]. Type: Cryphaea D.Mohr in other 10 occurred in an average of 1.7 countries. F.Weber This particular profile is typical of unrevised genera in Africa, and indicative of a possible A brief review of the circumscription and need for revision (O’Shea, 1997), particularly systematics of the family, and the distinctions from related families (e.g.
    [Show full text]
  • Phytotaxa, a Synthesis of Hornwort Diversity
    Phytotaxa 9: 150–166 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) A synthesis of hornwort diversity: Patterns, causes and future work JUAN CARLOS VILLARREAL1 , D. CHRISTINE CARGILL2 , ANDERS HAGBORG3 , LARS SÖDERSTRÖM4 & KAREN SUE RENZAGLIA5 1Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269; [email protected] 2Centre for Plant Biodiversity Research, Australian National Herbarium, Australian National Botanic Gardens, GPO Box 1777, Canberra. ACT 2601, Australia; [email protected] 3Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496; [email protected] 4Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 5Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901; [email protected] Abstract Hornworts are the least species-rich bryophyte group, with around 200–250 species worldwide. Despite their low species numbers, hornworts represent a key group for understanding the evolution of plant form because the best–sampled current phylogenies place them as sister to the tracheophytes. Despite their low taxonomic diversity, the group has not been monographed worldwide. There are few well-documented hornwort floras for temperate or tropical areas. Moreover, no species level phylogenies or population studies are available for hornworts. Here we aim at filling some important gaps in hornwort biology and biodiversity. We provide estimates of hornwort species richness worldwide, identifying centers of diversity. We also present two examples of the impact of recent work in elucidating the composition and circumscription of the genera Megaceros and Nothoceros.
    [Show full text]
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Recq Helicases Function in Development, DNA Repair, and Gene Targeting in Physcomitrella Patens[OPEN]
    The Plant Cell, Vol. 30: 717–736, March 2018, www.plantcell.org ã 2018 ASPB. RecQ Helicases Function in Development, DNA Repair, and Gene Targeting in Physcomitrella patensOPEN Gertrud Wiedemann,a Nico van Gessel,a Fabian Köchl,a Lisa Hunn,a Katrin Schulze,b Lina Maloukh,c Fabien Nogué,c Eva L. Decker,a Frank Hartung,b,1 and Ralf Reskia,d,1 a Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany b Julius Kuehn Institute, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany c Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France Downloaded from https://academic.oup.com/plcell/article/30/3/717/6099120 by guest on 28 September 2021 d BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany ORCID IDs: 0000-0002-0606-246X (N.v.G.); 0000-0003-0619-4638 (F.N.); 0000-0002-2356-6707 (F.H.); 0000-0002-5496-6711 (R.R.) RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • 1 Crum, Howard. Mosses of the Great Lakes Forest. Fourth Edition. 2004. Viii + 592 Pages
    125 BOOK REVIEW 2007 - #1 Crum, Howard. Mosses of the Great Lakes Forest. Fourth Edition. 2004. viii + 592 pages; introduction; dichotomous keys; illustrations; taxonomic descriptions; black and white photographs; glossary; index to Latin names. University of Michigan Herbarium, Ann Arbor, Michigan. Hard Cover. ISBN: 0-9620733-6-3. Price: US $40.00. Available from University of Michigan Herbarium, Publications, 3600 Varsity Drive, Ann Arbor, MI 48108-2287. The highly respected bryologist, Howard Crum, died in April 2002 before he could com- plete the fourth edition of his important and useful set of manuals entitled Mosses of the Great Lakes Forest (1973, 1976, and 1983). But fortunately and thankfully, William C. Buck and Christiane Anderson took on the task of editing and seeing Crum’s beautiful fourth edition to completion. Although the title, Mosses of the Great Lakes Forest, indicates a regional moss flora, the manual has a much broader application and can serve as an effective introductory taxo- nomic manual for the identification of mosses in the northeastern United States. In this respect, it is a handy companion to the more comprehensive two volume taxonomic pub- lication entitled Mosses of Eastern North America (Crum and Anderson, 1981). A significant feature following the introduction of Mosses of the Great Lakes Forest is the dichotomous key to genera treated in the manual; a feature not found in Mosses of Eastern North America. Descriptive materials (including illustrations) follow, with 545 pages for moss species of two divisions; Sphagnophyta (Peat Mosses) and Bryophyta with two classes Andreaeopsida (Granite Mosses) and Bryopsida (True Mosses). Following a description and noteworthy comments about the Sphagnophyta, and hence the only family Sphagnaceae, is a key to species of the single genus Sphagnum (pp.
    [Show full text]
  • Lichens of Alaska's South Coast
    United States Department of Agriculture Lichens of Alaska’s South Coast Forest Service R10-RG-190 Alaska Region Reprint April 2014 WHAT IS A LICHEN? Lichens are specialized fungi that “farm” algae as a food source. Unlike molds, mildews, and mushrooms that parasitize or scavenge food from other organisms, the fungus of a lichen cultivates tiny algae and / or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the body of the lichen (or thallus). The algae and cyanobacteria produce food for themselves and for the fungus by converting carbon dioxide and water into sugars using the sun’s energy (photosynthesis). Thus, a lichen is a combination of two or sometimes three organisms living together. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. Most lichen-forming fungi cannot exist without the photosynthetic partner because they have become dependent on them for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. HOW DO LICHENS REPRODUCE? Lichens sexually reproduce with fruiting bodies of various shapes and colors that can often look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and Figure 1. Apothecia, fruiting grow into the fungus. Each bodies fungus must find the right photosynthetic partner in order to become a lichen. Lichens reproduce asexually in several ways.
    [Show full text]
  • Ordovician Land Plants and Fungi from Douglas Dam, Tennessee
    PROOF The Palaeobotanist 68(2019): 1–33 The Palaeobotanist 68(2019): xxx–xxx 0031–0174/2019 0031–0174/2019 Ordovician land plants and fungi from Douglas Dam, Tennessee GREGORY J. RETALLACK Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA. *Email: gregr@uoregon. edu (Received 09 September, 2019; revised version accepted 15 December, 2019) ABSTRACT The Palaeobotanist 68(1–2): Retallack GJ 2019. Ordovician land plants and fungi from Douglas Dam, Tennessee. The Palaeobotanist 68(1–2): xxx–xxx. 1–33. Ordovician land plants have long been suspected from indirect evidence of fossil spores, plant fragments, carbon isotopic studies, and paleosols, but now can be visualized from plant compressions in a Middle Ordovician (Darriwilian or 460 Ma) sinkhole at Douglas Dam, Tennessee, U. S. A. Five bryophyte clades and two fungal clades are represented: hornwort (Casterlorum crispum, new form genus and species), liverwort (Cestites mirabilis Caster & Brooks), balloonwort (Janegraya sibylla, new form genus and species), peat moss (Dollyphyton boucotii, new form genus and species), harsh moss (Edwardsiphyton ovatum, new form genus and species), endomycorrhiza (Palaeoglomus strotheri, new species) and lichen (Prototaxites honeggeri, new species). The Douglas Dam Lagerstätte is a benchmark assemblage of early plants and fungi on land. Ordovician plant diversity now supports the idea that life on land had increased terrestrial weathering to induce the Great Ordovician Biodiversification Event in the sea and latest Ordovician (Hirnantian)
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Volume 1, Chapter 2-7: Bryophyta
    Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium.....................................................................................................
    [Show full text]