MA 5.4 NUMA SI GA RBHAVIKA S KRAM Completed Fetus in Prsava- Vastha Rasanufj*^SIK GARBHAVRUDHI

Total Page:16

File Type:pdf, Size:1020Kb

MA 5.4 NUMA SI GA RBHAVIKA S KRAM Completed Fetus in Prsava- Vastha Rasanufj*^SIK GARBHAVRUDHI MA 5.4 NUMA SI GA RBHAVIKA S KRAM Completed Fetus in prsava- vastha rASANUfJ*^SIK GARBHAVRUDHI I N Ayurvedic classics, the embryonit*««,^jie.uaJf6f'ment has been narrated monthwise while the modern Medical literature has considered the development of embryo in months as well as in weeks. "KALALAV/ASTHA (first month) ^ T ^.?1T. 3/14 Susruta and both Vagbhattas us.ed the word 'K a la la ' forthe shape of the embryo in the first month of intrauterine life. I Caraka has described the first month embryo as a mass ofcells like mucoid character in which all body parts though present are not conspicuous. T Incorporated within it all the five basic elements, ' Panchmah'abhuta' i.e. Pruthvi, Ap , Teja, Vayu and Akas . During the first month the organs of Embryo are both manifested and latent. It is from this stage of Embryo that various organs of the fetus develop, thus they are menifested. But these organs are not well menifested for differentiation and recongnisiation hence they are simultenously described as latent as well as manifested. 3T.f.^. 1/37 Astang - hrudayakar has described the embryo of first month as 'Kalala' but in 'avyakta' form. The organs of an embryo is in indistingushed form. Modern embryologist has described this first month development in week divisions. First Week - No fertile ova of the first week has been examined. Our knowledge of the first week of I embryo is of other mammals as amphibian. The egg is fertilised in the upper end of the uterine tube, and segments into about cells, before it I passes in to the uterus, it continues to segment and develop into a blastocyst (Budbuda) with a trophoblastic cells and inner cell mass. I Second Week - The blastocyst enlarges loses it's Zona pellucida I and becomes implanted in the uterine mucosa. The trophoblast enlarges and develop an activity invading outer syncytiotrophoblast and inner cytotrophoblast and forms primitive chorionic villi into which first mesoderm then blood vessels grow. The inner cell mass becomes the embryonic disc amnion and yolk sac. The primitive streak differentiates and then mesoderm and notochord are formed. Third Week - During the early part of third week the neurofolds appear. The allantoic duct begins to develop. The yolksac enlarges, and blood | vessels begin to form. Before the end of the i i week, the neuro folds begin to unite. The | Neurenteric canal opens. The primitive segments ^ begin to form. The changes during this week occur with great rapidity. | I Fourth Week- During the fourth week, the nural folds close, | s' the primitive segments increase number. The 5 brachial arches appear and the connection of yolk sac with the embryo becomes considerbly | narrowed so that the embryo assumes a more | definite form . I I Major events in Ilnd week - Implantation of blastocyst is completed by the 12 th day of development. The uterine decidua is named as deciduabesalis at the embryomic pole, decidua capsularis around the rest of the blastocyst and decidua paritalis which lines the rest of the uterine cavity. Decidua besalis forms the site of the future placenta. The Trophoblast differentiates into th syncytiotrophoblast and cytotrophoblast on 8 day. The successive development of trophoblastic lacunae, trabeculae, | utero-placental circulation, primary villi, and intervilous space | take place between 9 to 13 day. The intervillous space are | now filled with maternal blood. )f) The embryoblast defferentiates into bilaminar germdisc, ectodermal and endodermal layers. The germ disk is | sandwiched between the two vesicles. Both vesicles are enveloped by splanchnopleuric layer of extra-embryonic mesoderm. In the I| I later part of Ilnd week the primary yolk sae converts into secondary yolk sac. I i I I S Major events in Ilird week - The flattened germ disc changes in shape from circular to oval, and then pear shaped area with a broad cephalicand a narrow caudal end. The primitive streak appears in the caudal part of the germ disc. The cephalic end of the streak is enlarged to | form primitive node or Hensen's node. The notochord is visible on 17^^ or 18*^*^ day. I The successive processes in the development of notochord are | canalised notochordal process, formation of the neurenteric canal. | But convertion of bilaminar germ disc to trilaminar one is the I I achievement of Ilir d week. { Caudal to the cloacal membrane at the k I allanto-enteric diverticulum arises from the dorsi-caudal area of I the yolk sae extends into connecting stalk. I Primary choriaonic villi are changed to secondary I v illi with the appearance of a central core of primary mesoderm | and tertiary v illi with the advent of the fetal blood vessels in | the mesoderml core. "GHANAVASTHA" (Embryonic period) According to modern science this period extend th th, from the begining of the 4 week to the end of the 8 week. Out of the trilaminar area, the ectodermal layer provides I protection, the endodermal layer is meant for nutrition, andI mesodermal layer is primarily available for function of Skeletan, | tissues, muscles, and blood vascular system. Thus during Ilnd | month all major organs and tissues are laid down from the germ layers and external appearance of the embryo is recognisable with the development of the face and the limbbuds. Between 20 to 30 days most of the Somites appear. After the somite period the age can be calculated in ' CR' ( Crown Rump ) or CH ( Crown Heel ) length. On average the embryo at the age of 32 days is 5 mm in CR length, and it may increase 1 mm/day upto 55 days and there after 1.5 mm/day upto the full term. i I f Rudimentary upper limb develop first then lower k limb. The somatopleuric layer of the lateral plate extends within I the limbbuds as a mesodermal core and later differatiate to form || bones, and joints. The heart increases greatly in size, producing | a prominent bulge in the brachial region. I| I I I I i The recent concept about the development of trophoblast in vitro, from the blastocyst containing varying amounts of inner cell mass is available. It has been observed when intact blastocysts are cultured in vitro in medium supplimented the total calf serum, trophoblast cells proliferate and undergoes that cell transformation such as occur in vivo. If the amount of inner cell mass in the blastocysts is decreased by the culture with - HI - Thymidine , then giant cell transformation occur normally but proliferation is reduced. In the absence of giant cell mass no proliferation occures and giant cells transformation is more rapid than undamaged blastocyst. ^ T 3 / 1 4 . In Ayurveda the real work of Panchmahabhuta |I I start with the help of Dhatvagni and embryo now turns to some GHANA (solid) state. Which may be Pinda (o\=al), Peshi fi (elonggated) or Arbudasama (rounded). The external appearance i of embryo now turns to Pind (ball type) or Peshi (elongated) or | Arbuda (rounded). These shapes also give the hint of future | embryonic sex. If this solid mass had oval (Pinda) shape the | i I i born child would be male, if elongated (Pesi) the female and with L I Susruta and his followers corroborating the above views have elaborated that these accumulated Mahabhutas get processed by combined action of - Slesma, Pitta and Vayu and become solid. Susruta also suggested some herbal medicine known as 'Punsanvan Karma' for the male - sex embryo. According to modern anatomists, in the 5 week of intrauterine life the embryo becomes markedly curved, the head increases greatly in size and the limb buds show segments, the brachial arches undergo profound changes and partly disappear. The superficial nose, eye and erudiments become prominent. In the 6 week of intrauterine life, the curvature of embryo is further diminished. The brachial grooves eruept the first have p appeared and the rudiments of the fingers and toes can be | recognised. But in the 7 and 8^^ week the flexure of the head | is greatly reduced and the neck is somewhat lengthened. The | I upper lip is completed and nose is more prominent. The nostrils » I are directed forward and plate is not completely developed. The | eyelids are present in the shape of folds and below the eye and | the different parts of the aurical are distinguishable. By the end | of Ilnd month the fetus measures from 2.7 to 3 cm in length. | iI / •/ "PANCH-PINDAKAWASTHA" In Ayurvedic classics this period is known as ' Panchpindakawastha because the shape of fetus is similar to five buds stage. A head (Sir) upper extrimities (Hastas) and lower extrimities (Pada) appear in this month. Carka, Susruta and Vagbhata described the same condition with little difference. 3/14. 4/1 I . TTT% ft ^ T 3T.f.?IT.^. 1/54. According to Susruta in the 3^'^ month, there is | growth of fourlimbsbuds and onebud for head, other than this all | the external details of the body parts are visible in the fetus. I^ V^hile Carak did not mention about the limbbuds r I II I and head. He says that all the 'Indriyas' are visible. This | version it self speaks that all the four sense organs excepting skin which are present in the head region are visible along with the limbbud, which are ' Karmendriya' . Carak agrees with the view of Susruta that all the ’nody parts collectively develop in this month. ^ 5¥Tr^F^f^ T 3T.g.5n. 2/13- Similar description is in' the 'Astang Sangraha' about the development of four limbbuds and one headbud is available. According to modern embryologist the head is , extended and the neck is lengthened. The eyelids meet and fuse, remain closed until the end of 6*"'^ month.
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • 4 Extraembryonic Membranes
    Implantation, Extraembryonic Membranes, Placental Structure and Classification A t t a c h m e n t and Implantation Implantation is the first stage in development of the placenta. In most cases, implantation is preceded by a close interaction of embryonic trophoblast and endometrial epithelial cells that is known as adhesion or attachment. Implantation also is known as the stage where the blastocyst embeds itself in the endometrium, the inner membrane of the uterus. This usually occurs near the top of the uterus and on the posterior wall. Among other things, attachment involves a tight intertwining of microvilli on the maternal and embryonic cells. Following attachment, the blastocyst is no longer easily flushed from the lumen of the uterus. In species that carry multiple offspring, attachment is preceeded by a remarkably even spacing of embryos through the uterus. This process appears to result from uterine contractions and in some cases involves migration of embryos from one uterine horn to another (transuterine migration). The effect of implantation in all cases is to obtain very close apposition between embryonic and maternal tissues. There are, however, substantial differences among species in the process of implantation, particularly with regard to "invasiveness," or how much the embryo erodes into maternal tissue. In species like horses and pigs, attachment and implantation are essentially equivalent. In contrast, implantation in humans involves the embryo eroding deeply into the substance of the uterus. •Centric: the embryo expands to a large size before implantation, then remains in the center of the uterus. Examples include carnivores, ruminants, horses, and pigs. •Eccentric: The blastocyst is small and implants within the endometrium on the side of the uterus, usually opposite to the mesometrium.
    [Show full text]
  • From Trophoblast to Human Placenta
    From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst.
    [Show full text]
  • Formation of Germ Layers (Second & Third Week of Development)
    8.12.2014 Formation of Germ Layers (Second & Third week of Development) Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow Day 8 • Blastocyst is partially embedded in the endometrial stroma. • Trophoblast differentiates into 2 layers: (i) Cytotrophoblast (ii) Syncytiotrophoblast • Cytotrophoblast shows mitotic division. Day 8 • Cells of inner cell mass (embryoblast) also differentiate into 2 layers: (i) Hypoblast layer (ii) Epiblast layer • Formation of amniotic cavity and embryonic disc. Day 9 • The blastocyst is more deeply embedded in the endometrium. • The penetration defect in the surface epithelium is closed by a fibrin coagulum. Day 9 • Large no. of vacuoles appear in syncytiotrophoblast which fuse to form lacunae which contains embryotroph. Day 9 • Hypoblast forms the roof of the exocoelomic cavity (primary yolk sac). • Heuser’s (exocoelomic membrane) • Extraembryonic mesoderm Day 11 & 12 • Formation of lacunar networks • Extraembryonic coelom (chorionic cavity) • Extraembryonic somatic mesoderm • Extraembryonic splanchnic mesoderm • Chorion Day 13 • Implantation bleeding • Villous structure of trophoblast. • Formation of Primary villi • Secondary (definitive) yolk sac • Chorionic plate (extraembronic mesoderm with cytotrophoblast) Third week of Development • Gastrulation (formation of all 3 germ layers) • Formation of primitive streak • Formation of notochord • Differentiation of 3 germ layers from Bilaminar to Trilaminar germ disc Formation of Primitive Streak (PS) • First sign of gastrulation • On 15th day • Primitive node • Primitive pit • Formation of mesenchyme on 16th day • Formation of embryonic endoderm • Intraembryonic mesoderm • Ectoderm • Epiblast is the source of all 3 germ layers Fate of Primitive Streak • Continues to form mesodermal cells upto early part of 4th week • Normally, the PS degenerates & diminishes in size.
    [Show full text]
  • General Embryology-3-Placenta.Pdf
    Derivatives of Germ Layers ECTODREM 1. Lining Epithelia of i. Skin ii. Lips, cheeks, gums, part of floor of mouth iii. Parts of palate, nasal cavities and paranasal sinuses iv. Lower part of anal canal v. Terminal part of male urethera vi. Labia majora and outer surface of labia minora vii. Epithelium of cornea, conjuctiva, ciliary body, iris viii. Outer layer of tympanic membrane and membranous labyrinth ECTODERM (contd.): 2. Glands – Exocrine – Sweet glands, sebaceous glands Parotid, Mammary and lacrimal 3. Other derivatives i. Hair ii. Nails iii. Enamel of teeth iv. Lens of eye; musculature of iris v. Nervous system MESODERM: • All connective tissue including loose areolar tissue, superficial and deep fascia, ligaments, tendons, aponeuroses and the dermis of the skin. • Specialised connective tissue like adipose tissue, reticular tissue, cartilage and bone • All muscles – smooth, striated and cardiac – except the musculature of iris. • Heart, all blood vessels and lymphatics, blood cells. • Kidneys, ureters, trigone of bladder, parts of male and female urethera, inner prostatic glands. • Ovary, uterus, uterine tubes, upper part of vagina. • Testis, epidydimis, ductus deferens, seminal vesicle ejaculatory duct. • Lining mesothelium of pleural, pericardial and peritoneal cavities; and of tunica vaginalis. • Living mesothelium of bursae and joints. • Substance of cornea, sclera, choroid, ciliary body and iris. ENDODERM: 1. Lining Epithelia of i. Part of mouth, palate, tongue, tonsil, pharynx. ii. Oesophagus, stomach, small and large intestines, anal canal (upper part) iii. Pharyngo – tympanic tube, middle ear, inner layer of tympanic membrane, mastoid antrum, air cells. iv. Respiratory tract v. Gall bladder, extrahepatic duct system, pancreatic ducts vi.
    [Show full text]
  • Ultrasound Imaging of Early Extraembryonic Structures 1Sándor Nagy, 2Zoltán Papp
    DSJUOG Ultrasound Imaging10.5005/jp-journals-10009-1500 of Early Extraembryonic Structures REVIEW ARTICLE Ultrasound Imaging of Early Extraembryonic Structures 1Sándor Nagy, 2Zoltán Papp ABSTRACT to arrive at an accurate diagnosis and appropriate dis- Transvaginal sonography is the most useful diagnostic method position, thus providing efficient care that benefits both to visualize the early pregnancy, to determine whether it is intra- patients and doctors. The specific sonographic appear- uterine or extrauterine (ectopic), viable or not. Detailed examina- ance of normal pregnancy depends upon the gestational tion of extraembryonic structures allows us to differentiate the age. As the gestational age increases, the ability to assess types of early pregnancy failures and highlights the backgrounds the location and normal development of the pregnancy of vaginal bleeding, as the most frequent symptom of the first trimester of gestation. The reliable ultrasonographic sign of an becomes better. intrauterine pregnancy is visualization of double decidual ring, Spontaneous abortion is one of the most common which represents the trophoblast’s layer. The abnormality in the complications of pregnancy; every 12 to 15 out of 100 sonographic appearance of a gestational sac, a yolk sac, and conceptus are miscarried in the first half of gestation. a chorionic plate can predict subsequent embryonic damage and death. Vaginal bleeding is one of the most serious symptoms of the spontaneous abortion, which the pregnant are afraid Keywords: Blighted ovum, Chorionic plate, Extraembryonic structures, Gestational sac, Missed abortion, Subchorionic of, especially when extrachorial bleeding is detected by hemorrhage, Yolk sac. ultrasound. Transvaginal sonography is the optimal way to image How to cite this article: Nagy S, Papp Z.
    [Show full text]
  • 17. Formation and Role of Placenta
    17. FORMATION AND ROLE OF PLACENTA Joan W. Witkin, PhD Dept. Anatomy & Cell Biology, P&S 12-432 Tel: 305-1613 e-mail: [email protected] READING: Larsen, 3rd ed. pp. 20-22, 37-44 (fig. 2-7, p. 45), pp. 481-490 SUMMARY: As the developing blastocyst hatches from the zona pellucida (day 5-6 post fertilization) it has increasing nutritional needs. These are met by the development of an association with the uterine wall into which it implants. A series of synchronized morphological and biochemical changes occur in the embryo and the endometrium. The final product of this is the placenta, a temporary organ that affords physiological exchange, but no direct connection between the maternal circulation and that of the embryo. Initially cells in the outer layer of the blastocyst, the trophoblast, differentiate producing an overlying syncytial layer that adheres to the endometrium. The embryo then commences its interstitial implantation as cells of the syncytiotrophoblast pass between the endometrial epithelial cells and penetrate the decidualized endometrium. The invading embryo is first nourished by secretions of the endometrial glands. Subsequently the enlarging syncytiotrophoblast develops spaces that anastomose with maternal vascular sinusoids, forming the first (lacunar) uteroplacental circulation. The villous placental circulation then develops as fingers of cytotrophoblast with its overlying syncytiotrophoblast (primary villi) extend from the chorion into the maternal blood space. The primary villi become secondary villi as they are invaded by extraembryonic mesoderm and finally tertiary villi as embryonic blood vessels develop within them. During the first trimester of pregnancy cytotrophoblasts partially occlude the uterine vessels such that only plasma circulates in the intervillous space.
    [Show full text]
  • The Placenta Learning Module
    The placenta Learning module Developed by Carolyn Hammer Edited by Fabien Giroux Diagrams by Dr Yockell –Lelievre where indicated The placenta – Learning module Table of content 1) Introduction…………………………………………………………………………...…3 2) Anatomy and Physiology…………………………………………………….………...6 3) Roles and Functions…………………………………………………………..………23 4) Development and formation…………………………………………………………..35 5) What happens after birth…………………………………………………………...…44 6) What happens when things go wrong……………………………………………....46 7) Interesting facts about pregnancy…………………………………..……………….57 8) Testing what you know………………………………………..……………………...62 2 The placenta – Learning module Introduction 3 The placenta – Learning module What is the placenta? •The placenta is a: “vascular (supplied with blood vessels) organ in most mammals that unites the fetus to the uterus of the mother. It mediates the metabolic exchanges of the developing individual through an intimate association of embryonic tissues and of certain uterine tissues, serving the functions of nutrition, respiration, and excretion.” (Online Britannica Encyclopaedia) •The placenta is also known as a hemochorical villous organ meaning that the maternal blood comes in contact with the chorion and that villi protrude out of this same structure. As the fetus is growing and developing, it requires a certain amount of gases and nutrients to help support its needs throughout pregnancy. Because the fetus is unable to do so on its own, it is the placenta that carries out this function. http://health.allrefer.com/health/plac enta-abruptio-placenta.html 4 The placenta – Learning module What are the main roles of the placenta? •The placenta provides the connection between fetus and mother in order to help carry out many different functions that it is incapable to do alone.
    [Show full text]
  • The Duplication Op Male and Female
    THE DUPLICATION OP MALE AND FEMALE EXTERNAL GENITALIA: With Records of Two Cases, by THOMAS GILCHRIST, M.A., M,B«, Ch.B. THESIS for the Degree of M;D; September, 1932. ProQuest Number: 13905404 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905404 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 CONTENTS. Page Introduction ... ... 1. A. Duplication of Male External Genitalia 6. Historical Notes ... ... • • • 7. Summary of Recorded Cases ... 24. Description of Author1s Case ... 29. Post-Mortem Examination ... 33. Family History ••• ••• 37. B. Duplication of Female External Genitalia 41. Historical Notes ... ... ... 42. Summary of Recorded Cases ... 53. Description of Author's Case ... 56. Po81-Mortem Examination ... 60. Family History ... ... 68. II. Page G. DISCUSSION «*« •. * ••• i»* ••• 70. EMBRYOLOGY .............. 71. Early Differentiation of the Embryonic Area .♦• 71. The Development of the Posterior Aspect of the Yolk Sac *• i»* ... 77. The Development of the Urogenital Organs •., 85. EXPLANATION of the ABNORMALITIES 89. SUMMARY * 11 * * * • * * .«. 117. BIBLIOGRAPHY 121. III. I ILLUSTRATIONS. Figure Page 1. Photograph of Author* s Male Case of Duplicated External Genitalia 30.
    [Show full text]
  • A Novel in Vitro Model of Trophoblast-Mediated Decidual
    0023-6837/03/8312-1821$03.00/0 LABORATORY INVESTIGATION Vol. 83, No. 12, p. 1821, 2003 Copyright © 2003 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. A Novel In Vitro Model of Trophoblast-Mediated Decidual Blood Vessel Remodeling Caroline Dunk, Ljiljana Petkovic, Dora Baczyk, Janet Rossant, Elke Winterhager, and Stephen Lye Departments of Physiology and Fetal and Maternal Health (CD, LP, DB, JR, SL), Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and Institute of Anatomy (EW), University of Essen, Essen, Germany SUMMARY: In vivo the extravillous trophoblasts (EVTs) penetrate the decidua and the first third of the myometrium to remodel the uterine spiral arteries and achieve the high-flow, low-resistance circulation characteristic of the intervillous space of the term placenta. Much of our understanding of these processes comes from histologic analysis of placental bed biopsies, a limited tissue source and one that can provide only a snapshot of a dynamic process. To better characterize these cellular interactions, we have developed an in vitro co-culture system in which first trimester villous explants are cultured at low oxygen tension in contact with 2-mm2 sections of decidua parietalis from the same patient. Hematoxylin eosin counterstaining of paraffin sections shows that EVT columns form at the tips of the placental villi and adhere and penetrate the decidual surface. The decidual blood vessels in the path of the EVT show morphologic disruption. Immunohistochemical analysis of the co-cultures using both an endothelial specific anti-CD31 and an anti–smooth muscle actin antibody show a disruption of the integrity of the vessel lining together with a complete loss of organized smooth muscle actin surrounding the blood vessels.
    [Show full text]
  • Overview of the Development of the Human Brain and Spinal Cord
    Chapter 1 Overview of the Development of the Human Brain and Spinal Cord Hans J.ten Donkelaar and Ton van der Vliet 1.1 Introduction tant contributions to the description of human em- bryos were also made by Nishimura et al. (1977) and The development of the human brain and spinal cord Jirásek (1983, 2001, 2004). Examples of human em- may be divided into several phases, each of which is bryos are shown in Figs. 1.1 and 1.2. In the embryon- characterized by particular developmental disorders ic period, postfertilization or postconceptional age (Volpe 1987; van der Knaap and Valk 1988; Aicardi is estimated by assigning an embryo to a develop- 1992; Table 1.3). After implantation, formation and mental stage using a table of norms,going back to the separation of the germ layers occur, followed by dor- first Normentafeln by Keibel and Elze (1908). The sal and ventral induction phases, and phases of neu- term gestational age is commonly used in clinical rogenesis, migration, organization and myelination. practice, beginning with the first day of the last men- With the transvaginal ultrasound technique a de- strual period. Usually, the number of menstrual or tailed description of the living embryo has become gestational weeks exceeds the number of postfertil- possible. Fetal development of the brain can now be ization weeks by 2. During week 1 (stages 2–4) the studied in detail from about the beginning of the sec- blastocyst is formed, during week 2 (stages 5 and 6) ond half of pregnancy (Garel 2004). In recent years, implantation occurs and the primitive streak is much progress has been made in elucidating the formed,followed by the formation of the notochordal mechanisms by which the CNS develops, and also in process and the beginning of neurulation (stages 7– our understanding of its major developmental disor- 10).
    [Show full text]
  • Electron and Scanning Microscopic Observations on The
    isord D ers od & lo T r B f a n o s l f a u n s r Journal of i o u n o Selim et al., J Blood Disorders Transf 2013, 4:1 J ISSN: 2155-9864 Blood Disorders & Transfusion DOI: 10.4172/2155-9864.1000137 Research Article OpOpenen Access Access Electron and Scanning Microscopic Observations on the Syncytiotrophoblast Microvillous Membrane Contribution to Preeclampsia in Early Placental Rats Manar E Selim1,2*, Nouf G Elshmry3 and El Hamidi A Rashed1 1Department of Zoology, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA 2Department of Zoology, Ain Shams University, Cairo, Egypt 3Department of Zoology, College of Science, Hail University, Saudi Arabia Abstract Pre-eclampsia is a pregnancy-specific syndrome characterized by new-onset hypertension and proteinuria, occurring usually after 20 weeks’ gestation. The current study was carried out on 60 female Wistar rats. Group I: included virgin non-pregnant rats. Group II: included pregnant rats that were received saline solution (0.5 ml/100 g body weight) subcutaneously daily starting from day 7 to day 14 of gestation and served as control group. Group III: included pregnant rats that were treated with bestatin dissolved in saline in a dose of (40.0 μg/ml)/100 g body weight subcutaneously and daily starting from the same day of gestation and for the same duration as mentioned for group II, to make an animal model of preeclampsia. Hence several possible mechanisms of the activation in pre-eclampsia can be considered, all dependent on the syncytiotrophoblast microvillous surface membrane which is the placental surface in contact with maternal blood.
    [Show full text]