A Natural System of Organisms Considerations Would Be As Follows: SIR-For a Remarkably Long Time After Proposed by Woese Et Al

Total Page:16

File Type:pdf, Size:1020Kb

A Natural System of Organisms Considerations Would Be As Follows: SIR-For a Remarkably Long Time After Proposed by Woese Et Al SCIENTIFIC CORRESPONDENCE system that has been in use for so many years. A classification based on these A natural system of organisms considerations would be as follows: SIR-For a remarkably long time after proposed by Woese et al .. one could adopt Domain Prokaryota (Monera) the publication of Linnaeus's Systema a division of the organic world into two Subdomain Eubacteria Naturae ( 1758) only two branches of great domains, the Prokaryota (Monera) Subdomain Archaebacteria systematics were generally recognized: and the Eukaryota. Kingdom Crenarchaeota zoology and botany. Fungi and even The specialists of the Prokaryota will Kingdom Euryarchaeota bacteria were traditionally looked after by have to decide what rank (category) Domain Eukaryota botanists and studied in botany depart­ to choose for the Archacbacteria and Subdomain Protista ments. In due time, primarily because of Eubacteria, either subdomain or king­ Subdomain Metabionta their medical importance. the bacteria dom. Ranking them as subdomains would Kingdom Metaphyta (plants) were recognized as different from higher permit ranking the two divisions of the Kingdom Fungi organisms and eventually it was realized Archaebacteria as the kingdoms Cren­ Kingdom Metazoa (animals) that the fungi had nothing particularly in archaeota and Euryarchaeota. As far as ERNST MAYR common with the plants. Making use of the domain of the Eukaryota is con­ Museum of Comparative Zoology, these insights, Whittaker' suggested cerned, instead of recognizing the custom­ Harvard University, recognizing five kingdoms of organisms ary four kingdoms, it might be advisable Cambridge, (Animalia, Plantac, Fungi. Protista and to recognize two subdomains on the basis Massachusetts 02138, USA Monera) and this proposal was widely of grade of organization, the largely adopted. unicellular Protista and the multi­ 1 Whittaker. R.H. Q. Rev. 810/. 34. 210-226 (1959). 2 Woese. C.R .. Kandler, 0. & Wheelis. M.L. Proc. natn. In an article published in June, Woese et cellular "Metabionta', containing the Fungi, Acad. Sci. US.A 87. 4576-4579 (1990). 2 al. correctly pointed out that a system Mctaphyta and Mctazoa. 3. Chatton, E. Titres et Travaux Sc,entifique (1906-1937) de that assigns the same rank to five higher Everyone realizes that the Protista are Edouard Chatton (Sottano, Sete, 1938). 4. Hennig, W. PhylogeneticSystematics(trans. Davis, D.D. & taxa that differ from each other so un­ as heterogeneous a lot ( or more so) as Zangerl, R.) (Univ. Illinois Press, Urbana, 1966). evenly is highly unbalanced and therefore the three kingdoms of the Metabionta 5. Mayr. E. Verh. Dtsch. Zoo/. Ges. Stuttgart (in the press). unsatisfactory. Instead, they proposed to together. I have little doubt that the recognize three ·domains' of organisms, specialists will in due time break them up the Bacteria, the Archaea and the Euc­ into a considerable number of kingdoms, Ambidextrous RNA arya. Unfortunately, in this arrangement but by recognizing the subdomain Protista S1R-John Galloway, in his discussion in the previous imbalance is replaced by a one emphasizes that these organisms News and Views' of Brown and Wolpert's different one. The ranking in the classifi­ represent a definite evolutionary grade, a paper' on asymmetry in development, cation suggested by Woese et al. is based definite stage in the development of the states that molecular determinants are entirely on the amount of difference in derived multicellular Metabionta. Many unlikely to be involved. He points out that ribosomal RNA, ignoring the enormous of these protists combine characteristics the structure of individual proteins is evolutionary step from the prokaryotes to (such as mobility) traditionally ascribed to either right- or left-handed and that gene the eukaryotes. I would like to propose a animals, with other characteristics (such mutation could not readily produce a new classification of the living world based as photosynthesis) traditionally ascribed change in handedness, and also that the on that second consideration. to plants. Others have characteristics not primary structure of nucleic acids cannot The difference in structural organiza­ found in any of the multicellular taxa. be ambidextrous. tion between prokaryotes and eukaryotes Eventually, when molecular research is But if one considers the secondary is an order of magnitude greater than the further advanced, it will be possible to structure of nucleic acids it is easy to see relatively small difference between the determine exactly which of the protist that RNA molecules, or parts of such Archaebacteria and the Eubacteria. As genera or families gave rise to the higher molecules, could exist in left- or right­ important as the molecular distance animals and plants. handed forms. Simply hypothetical between Archaebacteria and Eubacteria There is considerable disagreement examples arc shown in the figure. The base may seem to a specialist. as far as their among taxonomists as to methodology sequence of the stem of the two molecules general organization is concerned. the two and theory of macrotaxonomy. Cladists is the same. and the sequence of the side kinds of prokaryotes are very much the favour Hennig's ·general reference sys­ same. By contrast, the series of evolution­ tems·'_ in which taxa that have given rise ary steps in cellular organization leading to descendants (ex-groups) arc broken up UG C U from the prokaryotes to the eukaryotes, and removed from the clnssification as A A U-A including the acquisition of a nucleus, a set being ·paraphyletic'. Cladists would prob­ G-C A-U C-G of chromosomes and the acquisition, pre­ ably not recognize those prokaryote taxa C-G C-G sumably through symbiosis, of various cel­ that participated in the evolution of the A-U U-A lular organelles ( chloroplasts, mitochond­ eukaryotes. They would certainly reject G-C UGAAAUCGC AG-CC ria and so on). results in the eukaryotes in recognition of the Protista, which includes cucUUAGCC Ge_/· an entirely novel level of organization. C-G the ancestors of various mctaphytic and G-C U-A This new organization has had funda­ metazoan groups. A-U A-U mental consequences for the further A basic classification of the living world C-G evolution of the eukaryotes. including will be used not only by specialists but also 5·---GAU-ACA---3· diploidy, sexuality and meiosis. by non taxonomists and lay people. They Right- and left-handed RNA structures. The This was surely the most drastic change will be more comfortable with the classical sequences of bases in the stem and the side in the whole history of the organic world. concept of classification' with its recogni­ arms are the same, but the latter are inserted It seems that the fundamental difference tion of the traditional grouping of protists. at different positions while retaining the same between prokaryotes and eukaryotes. fungi. metaphytes and metazoans. Grade sequence polarity. The orientation of the bases in the terminal loops are different in the originally pointed out by Chatton '. should of evolutionary development. as well as two molecules. so a specific protein (dashed be made the basis of the first great classi­ organizational similarity. are stressed in line) may bind to one and not the other. ficatory division in the system of organ­ this arrangement. which also agrees Alternatively, different proteins might bind to isms. Using the categorical term "domain' with the traditional information-retrieval each molecule. NATURE · VOL 348 · 6 DECEMBER 1990 491 .
Recommended publications
  • Diagnosis and Differentiation of the Order Primates
    YEARBOOK OF PHYSICAL ANTHROPOLOGY 30:75-105 (1987) Diagnosis and Differentiation of the Order Primates FREDERICK S. SZALAY, ALFRED L. ROSENBERGER, AND MARIAN DAGOSTO Department of Anthropolog* Hunter College, City University of New York, New York, New York 10021 (F.S.S.); University of Illinois, Urbanq Illinois 61801 (A.L. R.1; School of Medicine, Johns Hopkins University/ Baltimore, h4D 21218 (M.B.) KEY WORDS Semiorders Paromomyiformes and Euprimates, Suborders Strepsirhini and Haplorhini, Semisuborder Anthropoidea, Cranioskeletal morphology, Adapidae, Omomyidae, Grades vs. monophyletic (paraphyletic or holophyletic) taxa ABSTRACT We contrast our approach to a phylogenetic diagnosis of the order Primates, and its various supraspecific taxa, with definitional proce- dures. The order, which we divide into the semiorders Paromomyiformes and Euprimates, is clearly diagnosable on the basis of well-corroborated informa- tion from the fossil record. Lists of derived features which we hypothesize to have been fixed in the first representative species of the Primates, Eupri- mates, Strepsirhini, Haplorhini, and Anthropoidea, are presented. Our clas- sification of the order includes both holophyletic and paraphyletic groups, depending on the nature of the available evidence. We discuss in detail the problematic evidence of the basicranium in Paleo- gene primates and present new evidence for the resolution of previously controversial interpretations. We renew and expand our emphasis on postcra- nial analysis of fossil and living primates to show the importance of under- standing their evolutionary morphology and subsequent to this their use for understanding taxon phylogeny. We reject the much advocated %ladograms first, phylogeny next, and scenario third” approach which maintains that biologically founded character analysis, i.e., functional-adaptive analysis and paleontology, is irrelevant to genealogy hypotheses.
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]
  • Estimation of Gene Insertion/Deletion Rates with Missing Data
    | INVESTIGATION Estimation of Gene Insertion/Deletion Rates with Missing Data Utkarsh J. Dang,*,1 Alison M. Devault,† Tatum D. Mortimer,‡ Caitlin S. Pepperell,‡ Hendrik N. Poinar,§ and G. Brian Golding**,2 *Departments of Biology and Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S-4L8, Canada, †MYcroarray, Ann Arbor, Michigan 48105, ‡Departments of Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, and §Department of Anthropology and **Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada ABSTRACT Lateral gene transfer is an important mechanism for evolution among bacteria. Here, genome-wide gene insertion and deletion rates are modeled in a maximum-likelihood framework with the additional flexibility of modeling potential missing data. The performance of the models is illustrated using simulations and a data set on gene family phyletic patterns from Gardnerella vaginalis that includes an ancient taxon. A novel application involving pseudogenization/genome reduction magnitudes is also illustrated, using gene family data from Mycobacterium spp. Finally, an R package called indelmiss is available from the Comprehensive R Archive Network at https://cran.r-project.org/package=indelmiss, with support documentation and examples. KEYWORDS gene insertion/deletion; indel rates; maximum likelihood; unobserved data ATERAL gene transfer is an important, yet traditionally Marri et al. 2006; Cohen and Pupko 2010). Traditionally, Lunderestimated, mechanism for microbial evolution such likelihood-based analyses have required that the closely (McDaniel et al. 2010; Treangen and Rocha 2011). Whole related sequences being investigated have complete genome gene insertions/deletions, referred to as indels here in the sequences available.
    [Show full text]
  • Université De Montréal Edit Distance Metrics for Measuring Dissimilarity
    Université de Montréal Edit Distance Metrics for Measuring Dissimilarity between Labeled Gene Trees par Samuel Briand Département d’informatique et de recherche opérationnelle Faculté des arts et des sciences Mémoire présenté en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en Informatique Orientation Biologie computationelle August 7, 2020 © Samuel Briand, 2020 Université de Montréal Faculté des arts et des sciences Ce mémoire intitulé Edit Distance Metrics for Measuring Dissimilarity between Labeled Gene Trees présenté par Samuel Briand a été évalué par un jury composé des personnes suivantes : Sylvie Hamel (président-rapporteur) Nadia El-Mabrouk (directeur de recherche) Esma Aïmeur (membre du jury) Résumé Les arbres phylogénétiques sont des instruments de biologie évolutive offrant de formidables moyens d’étude pour la génomique comparative. Ils fournissent des moyens de représenter des mécanismes permettant de modéliser les relations de parenté entre les espèces ou les membres de familles de gènes en fonction de la diversité taxonomique, ainsi que des observations et des renseignements sur l’histoire évolutive, la structure et la variation des processus biologiques. Cependant, les méthodes traditionnelles d’inférence phylogénétique ont la réputation d’être sensibles aux erreurs. Il est donc indispensable de comparer les arbres phylogénétiques et de les analyser pour obtenir la meilleure interprétation des données biologiques qu’ils peuvent fournir. Nous commençons par aborder les travaux connexes existants pour déduire, comparer et analyser les arbres phylogénétiques, en évaluant leurs bonnes caractéristiques ainsi que leurs défauts, et discuter des pistes d’améliorations futures. La deuxième partie de cette thèse se concentre sur le développement de mesures efficaces et précises pour analyser et comparer des paires d’arbres génétiques avec des nœuds internes étiquetés.
    [Show full text]
  • Are Pinnipeds Functionally Different from Fissiped Carnivores? the Importance of Phylogenetic Comparative Analyses
    Evolution, 54(3), 2000, pp. 1011±1023 ARE PINNIPEDS FUNCTIONALLY DIFFERENT FROM FISSIPED CARNIVORES? THE IMPORTANCE OF PHYLOGENETIC COMPARATIVE ANALYSES OLAF R. P. BININDA-EMONDS1,2 AND JOHN L. GITTLEMAN3,4 1Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom 3Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996-1610 Abstract. It is widely assumed that adaptations to an aquatic lifestyle are so profound as to produce only obvious differences between pinnipeds and the remaining, largely terrestrial carnivore species (``®ssipeds''). Thus, comparative studies of the order Carnivora routinely examine these groups independently. This approach is invalid for two reasons. First, ®ssipeds are a paraphyletic assemblage, which raises the general issue of when it is appropriate to ignore monophyly as a criterion for inclusion in comparative studies. Second, the claim that most functional characters (beyond a few undoubted characteristic features) are different in pinnipeds and ®ssipeds has never been quantitatively examined, nor with phylogenetic comparative methods. We test for possible differences between these two groups in relation to 20 morphological, life-history, physiological, and ecological variables. Comparisons employed the method of independent contrasts based on a complete and dated species-level phylogeny of the extant Carnivora. Pinnipeds differ from ®ssipeds only through evolutionary grade shifts in a limited number of life-history traits: litter weight (vs. gestation length), birth weight, and age of eyes opening (both vs. size). Otherwise, pinnipeds display the same rate of evolution as phylogenetically equivalent ®ssiped taxa for all variables. Overall functional differences between pinnipeds and ®ssipeds appear to have been overstated and may be no greater than those among major ®ssiped groups.
    [Show full text]
  • Haeckel's 1866 Tree of Life and the Origin of Eukaryotes
    PUBLISHED: 26 JULY 2016 | ARTICLE NUMBER: 16114 | DOI: 10.1038/NMICROBIOL.2016.114 correspondence Haeckel’s 1866 tree of life and the origin of eukaryotes To the Editor — In their Letter describing were summarized under the domain an expanded version of the tree of life, Eukarya, which includes all eukaryotic Hug et al.1 refer to a key publication of micro- and macroorganisms (from amoebae Carl Woese and co-workers2, wherein a to humans). 16S rRNA-phylogenetic scheme of the In chapter 26 entitled ‘Phylogenetic domains Bacteria, Archaea and Eukarya is theses’, Haeckel3 re-interpreted and shown. However, the first three-kingdom supplemented Darwin’s evolutionary tree of life that included microorganisms deductions of 1859. With reference to the was depicted by Ernst Haeckel (pictured simplest protists (bacteria), which form the at around 26 years old) in his General root of his ‘oak tree’ (see Fig. 6 in ref. 5), Morphology of Organisms, a seminal book Haeckel3 concluded that “all organisms that was published one hundred and are the descendants of such autogenous fifty years ago3. Moneren”. Hence, according to this In his Origin of Species, Charles Darwin Haeckelian interpretation of the phylogeny refers to the Linnean two-kingdom of life, the Monera (that is, Bacteria and system, with ‘Animalia’ and ‘Vegetabilia’ Archaea)2 are the progenitors of all more as the only two branches of the living complex living beings on Earth. world. Haeckel3, who was also known This 150-year-old idea is consistent with as the German Darwin4, introduced a recent discoveries and genomic analyses that three-kingdom scheme in which, as a support an archaeal origin of eukaryotes1,8.
    [Show full text]
  • Evolutionary Crossroads in Developmental Biology: Cyclostomes (Lamprey and Hagfish) Sebastian M
    PRIMER SERIES PRIMER 2091 Development 139, 2091-2099 (2012) doi:10.1242/dev.074716 © 2012. Published by The Company of Biologists Ltd Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish) Sebastian M. Shimeld1,* and Phillip C. J. Donoghue2 Summary and is appealing because it implies a gradual assembly of vertebrate Lampreys and hagfish, which together are known as the characters, and supports the hagfish and lampreys as experimental cyclostomes or ‘agnathans’, are the only surviving lineages of models for distinct craniate and vertebrate evolutionary grades (i.e. jawless fish. They diverged early in vertebrate evolution, perceived ‘stages’ in evolution). However, only comparative before the origin of the hinged jaws that are characteristic of morphology provides support for this phylogenetic hypothesis. The gnathostome (jawed) vertebrates and before the evolution of competing hypothesis, which unites lampreys and hagfish as sister paired appendages. However, they do share numerous taxa in the clade Cyclostomata, thus equally related to characteristics with jawed vertebrates. Studies of cyclostome gnathostomes, has enjoyed unequivocal support from phylogenetic development can thus help us to understand when, and how, analyses of protein-coding sequence data (e.g. Delarbre et al., 2002; key aspects of the vertebrate body evolved. Here, we Furlong and Holland, 2002; Kuraku et al., 1999). Support for summarise the development of cyclostomes, highlighting the cyclostome theory is now overwhelming, with the recognition of key species studied and experimental methods available. We novel families of non-coding microRNAs that are shared then discuss how studies of cyclostomes have provided exclusively by hagfish and lampreys (Heimberg et al., 2010).
    [Show full text]
  • Archaea, Eukarya
    Chapter 3 To study the diversity of life, biologists use a classification system to name organisms and group them in a logical manner. Common names can be confusing . An organism may have the same name in different languages. It can be misleading! Also common names often refer to more than one organism. What we call corn is wheat in Britain Scientist use scientific names to exchange info and be certain that they are referring to the same organism When taxonomists classify organisms, they organize them into groups that have biological significance. In the discipline of taxonomy, scientists classify organisms and assign each organism a universally accepted name. In a good system of classification, organisms placed into a particular group are more similar to each other than they are to organisms in other groups. Copyright Pearson Prentice Hall Common names of organisms vary from country to country (or even within countries), so scientists assign one specific scientific name for each species. Because 18th century scientists around the world understood Latin and Greek, they used those languages for scientific names. This practice is still followed in naming new species. Copyright Pearson Prentice Hall Early Efforts at Naming Organisms The first attempts at standard scientific names described the physical characteristics of a species in great detail. The name of a wild violet might be: “small purple flower with four petals and heart shaped leaves that grows by the brook in the spring.” These names were not standardized because different scientists described different characteristics. Copyright Pearson Prentice Hall Binomial Nomenclature What is binomial nomenclature? Carolus Linneaus developed a naming system called binomial nomenclature.
    [Show full text]
  • A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree
    A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fournier, Gregory P., and Anthony M. Poole. “A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree.” Frontiers in Microbiology, vol. 9, Aug. 2018. © 2018 Fournier and Poole. As Published http://dx.doi.org/10.3389/fmicb.2018.01896 Publisher Frontiers Research Foundation Version Final published version Citable link http://hdl.handle.net/1721.1/118316 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ fmicb-09-01896 August 13, 2018 Time: 20:0 # 1 HYPOTHESIS AND THEORY published: 15 August 2018 doi: 10.3389/fmicb.2018.01896 A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree Gregory P. Fournier1* and Anthony M. Poole2 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States, 2 Bioinformatics Institute, Te Ao Marama¯ – Centre for Fundamental Inquiry, School of Biological Sciences, The University of Auckland, Auckland, New Zealand The recent discovery of the Lokiarchaeota and other members of the Asgard superphylum suggests that closer analysis of the cell biology and evolution of these groups may help shed light on the origin of the eukaryote cell. Asgard lineages often appear in molecular phylogenies as closely related to eukaryotes, and possess “Eukaryote Signature Proteins” coded by genes previously thought to be unique to eukaryotes. This phylogenetic affinity to eukaryotes has been widely interpreted as indicating that Asgard lineages are “eukaryote-like archaea,” with eukaryotes evolving from within a paraphyletic Archaea.
    [Show full text]
  • 6.7 Classification, Natural Selection and Adaptations
    CLASSIFICATION, NATURAL SELECTION AND ADAPTIONS Grade 6 Activity Plan Reviews and Updates 6.7 Classification, Natural Selection and Adaptions Objectives: 1. To understand how living things can be subdivided into small groups of related organisms. 2. To learn how to classify organisms based on similar characteristics. 3. To understand how new organisms arise from previously existing ones through evolution. 4. To see how living things adapt to their surroundings/environment through evolution and natural selection. Keywords/concepts: Classification, Hierarchy, Organism, Diversity, Survival, Adaptation, Evolution, Natural selection, Heterotroph, Autotroph, Eukaryote, Prokaryote, Replication, DNA, Mutation. Curriculum Outcomes: Grade 6: Outcome 6 concepts: Bullets 1, 2, 3, 4. Outcome 6 indicators: Bullets 1, 2, 3, 4. Focus: Bullet 1. Take-home product: Model of an imaginary ideal species. Written by: Dario Brooks, June, July 2016. Edited by: Bai Bintou Kaira, July 2016. Segment Details African Every cackling hen was an egg at first. Proverb Rwanda (5 min.) Ask some questions to get the students to start thinking about how we classify living things, and how organisms adapt to their environment. • What are some things that set living things apart from each other? Give some examples, such as shape, colours, or sounds. • Give some examples of plants or animals and explain Pre-test how you think their characteristics help them survive in (10 min.) their environment, such as fur, claws for defence, or camouflage. • Brainstorm on how you think animals develop the traits they have to help them thrive. Mentors: Help the students think about organisms that live in harsh environments, such as camels and cold- blooded lizards.
    [Show full text]
  • Biology 3404F Evolution of Plants Fall 2018 Description: This Course Provides an Introduction to the Major Groups of Photosynthe
    Biology 3404F Evolution of Plants Fall 2018 Description: This course provides an introduction to the major groups of photosynthetic organisms – formerly all called “plants” (Kingdom Plantae) but now classified in three Domains and numerous Kingdoms. These organisms feed the world, produce many of today's medicines, and provide numerous ecosystem functions. Lectures emphasize diversity, evolutionary relationships and importance, and labs emphasize morphology and recognition. There is no text, but key references will be supplied online or on reserve in Taylor Library. 2 lecture hours, 3 laboratory hours, 0.5 course. Note: This is a lab and essay course, so under Senate rules you must pass both the lab (30%) and essay (15%) components to pass the course. Instructor: Dr. R. Greg Thorn, Department of Biology 3047 Biological & Geological Sciences Building <[email protected]> 661-2111 ext. 88647 http://publish.uwo.ca/~rgthorn Lectures: Tuesdays and Thursdays at 9:30-10:30 a.m., BGS 0165 NOTE: First Lecture is Thursday September 6 Labs: Wednesdays from 9:30 a.m. to 12:30 p.m., BGS 3000 NOTE: First Lab is Wednesday September 12 [Lab coats/safety glasses not required] Office Hours: Tuesdays 12:00-1:00 p.m. (or by appointment) Laboratory Teaching Assistant: Karina Kaberi <[email protected]> Learning Outcomes At the end of this course, successful students will be able to: 1. Demonstrate an understanding of phylogenetic analysis (estimation of evolutionary relationships) by recognizing monophyletic and nonmonophyletic groups and interpreting the relationships shown in exemplar phylogenetic trees. 2. Demonstrate a working knowledge of phylogenetic analyses based on DNA sequence by selecting and obtaining taxon and data sets from online sources, constructing sequence alignments, creating phylogenetic trees from these data using a variety of suitable algorithms, and interpreting and evaluating the trees produced.
    [Show full text]
  • Classifying Monerans and Protists Teacher’S Guide Middle School
    Classifying Monerans and Protists Teacher’s Guide Middle School Editors: Brian A. Jerome, Ph.D. Stephanie Zak Jerome Assistant Editors: Louise Marrier Graphics: Dean Ladago Fred Thodal Visual Learning Company 1-800-453-8481 25 Union Street www.visuallearningco.com Brandon, Vermont Classifying Monerans and Protists Use and Copyright The purchase of this video program entitles the user the right to reproduce or duplicate, in whole or in part, this teacher’s guide and the blackline master handouts for the purpose of teaching in conjunction with this video, Classifying Monerans and Protists. The right is restricted only for use with this video program. Any reproduction or duplication, in whole or in part, of this guide and student masters for any purpose other than for use with this video program is prohibited. The video and this teacher’s guide are the exclusive property of the copyright holder. Copying, transmitting or reproducing in any form, or by any means, without prior written permission from the copyright holder is prohibited (Title 17, U.S. Code Sections 501 and 506). Copyright © 2006 ISBN 978-1-59234-138-1 Visual Learning Company 1-800-453-8481 www.visuallearningco.com 2 3 Classifying Monerans and Protists Table of Contents Page A Message From Our Company 5 National Standards Correlations 6 Student Learning Objectives 7 Assessment 8 Introducing the Video 9 Video Viewing Suggestions 9 Video Script 10 Student Assessments and Activities 16 Answers to Student Assessments 17 Answers to Student Activities 18 Assessment and Student Activity Masters 19 www.visuallearningco.com 1-800-453-8481 Visual Learning Company 2 3 Classifying Monerans and Protists Viewing Clearances The video and accompanying teacher’s guide are for instructional use only.
    [Show full text]