Structural Characterization of Thioether-Bridged Bacteriocins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Thiopeptides As a Privileged Scaffold for Drug Discovery and Therapeutic Development
– MEDICINAL Medicinal Chemistry Research (2019) 28:1063 1098 CHEMISTRY https://doi.org/10.1007/s00044-019-02361-1 RESEARCH REVIEW ARTICLE Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development 1 1 1 1 1 Xiaoqi Shen ● Muhammad Mustafa ● Yanyang Chen ● Yingying Cao ● Jiangtao Gao Received: 6 November 2018 / Accepted: 16 May 2019 / Published online: 29 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Since the start of the 21st century, antibiotic drug discovery and development from natural products has experienced a certain renaissance. Currently, basic scientific research in chemistry and biology of natural products has finally borne fruit for natural product-derived antibiotics drug discovery. A batch of new antibiotic scaffolds were approved for commercial use, including oxazolidinones (linezolid, 2000), lipopeptides (daptomycin, 2003), and mutilins (retapamulin, 2007). Here, we reviewed the thiazolyl peptides (thiopeptides), an ever-expanding family of antibiotics produced by Gram-positive bacteria that have attracted the interest of many research groups thanks to their novel chemical structures and outstanding biological profiles. All members of this family of natural products share their central azole substituted nitrogen-containing six-membered ring and are fi 1234567890();,: 1234567890();,: classi ed into different series. Most of the thiopeptides show nanomolar potencies for a variety of Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and penicillin-resistant Streptococcus pneumonia (PRSP). They also show other interesting properties such as antiplasmodial and anticancer activities. The chemistry and biology of thiopeptides has gathered the attention of many research groups, who have carried out many efforts towards the study of their structure, biological function, and biosynthetic origin. -
Cyanobacterial Peptide Toxins
CYANOBACTERIAL PEPTIDE TOXINS CYANOBACTERIAL PEPTIDE TOXINS 1. Exposure data 1.1 Introduction Cyanobacteria, also known as blue-green algae, are widely distributed in fresh, brackish and marine environments, in soil and on moist surfaces. They are an ancient group of prokaryotic organisms that are found all over the world in environments as diverse as Antarctic soils and volcanic hot springs, often where no other vegetation can exist (Knoll, 2008). Cyanobacteria are considered to be the organisms responsible for the early accumulation of oxygen in the earth’s atmosphere (Knoll, 2008). The name ‘blue- green’ algae derives from the fact that these organisms contain a specific pigment, phycocyanin, which gives many species a slightly blue-green appearance. Cyanobacterial metabolites can be lethally toxic to wildlife, domestic livestock and even humans. Cyanotoxins fall into three broad groups of chemical structure: cyclic peptides, alkaloids and lipopolysaccharides. Table 1.1 gives an overview of the specific toxic substances within these broad groups that are produced by different genera of cyanobacteria together, with their primary target organs in mammals. However, not all cyanobacterial blooms are toxic and neither are all strains within one species. Toxic and non-toxic strains show no predictable difference in appearance and, therefore, physicochemical, biochemical and biological methods are essential for the detection of cyanobacterial toxins. The most frequently reported cyanobacterial toxins are cyclic heptapeptide toxins known as microcystins which can be isolated from several species of the freshwater genera Microcystis , Planktothrix ( Oscillatoria ), Anabaena and Nostoc . More than 70 structural variants of microcystins are known. A structurally very similar class of cyanobacterial toxins is nodularins ( < 10 structural variants), which are cyclic pentapeptide hepatotoxins that are found in the brackish-water cyanobacterium Nodularia . -
First Evidence of Production of the Lantibiotic Nisin P Enriqueta Garcia-Gutierrez1,2, Paula M
www.nature.com/scientificreports OPEN First evidence of production of the lantibiotic nisin P Enriqueta Garcia-Gutierrez1,2, Paula M. O’Connor2,3, Gerhard Saalbach4, Calum J. Walsh2,3, James W. Hegarty2,3, Caitriona M. Guinane2,5, Melinda J. Mayer1, Arjan Narbad1* & Paul D. Cotter2,3 Nisin P is a natural nisin variant, the genetic determinants for which were previously identifed in the genomes of two Streptococcus species, albeit with no confrmed evidence of production. Here we describe Streptococcus agalactiae DPC7040, a human faecal isolate, which exhibits antimicrobial activity against a panel of gut and food isolates by virtue of producing nisin P. Nisin P was purifed, and its predicted structure was confrmed by nanoLC-MS/MS, with both the fully modifed peptide and a variant without rings B and E being identifed. Additionally, we compared its spectrum of inhibition and minimum inhibitory concentration (MIC) with that of nisin A and its antimicrobial efect in a faecal fermentation in comparison with nisin A and H. We found that its antimicrobial activity was less potent than nisin A and H, and we propose a link between this reduced activity and the peptide structure. Nisin is a small peptide with antimicrobial activity against a wide range of pathogenic bacteria. It was originally sourced from a Lactococcus lactis subsp. lactis isolated from a dairy product1 and is classifed as a class I bacteri- ocin, as it is ribosomally synthesised and post-translationally modifed2. Nisin has been studied extensively and has a wide range of applications in the food industry, biomedicine, veterinary and research felds3–6. -
Alternative Functions of ABC Transporters in Bacillus Subtilis and Listeria Monocytogenes
microorganisms Review Not Just Transporters: Alternative Functions of ABC Transporters in Bacillus subtilis and Listeria monocytogenes Jeanine Rismondo * and Lisa Maria Schulz Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-551-39-33796 Abstract: ATP-binding cassette (ABC) transporters are usually involved in the translocation of their cognate substrates, which is driven by ATP hydrolysis. Typically, these transporters are required for the import or export of a wide range of substrates such as sugars, ions and complex organic molecules. ABC exporters can also be involved in the export of toxic compounds such as antibiotics. However, recent studies revealed alternative detoxification mechanisms of ABC transporters. For instance, the ABC transporter BceAB of Bacillus subtilis seems to confer resistance to bacitracin via target protection. In addition, several transporters with functions other than substrate export or import have been identified in the past. Here, we provide an overview of recent findings on ABC transporters of the Gram-positive organisms B. subtilis and Listeria monocytogenes with transport or regulatory functions affecting antibiotic resistance, cell wall biosynthesis, cell division and sporulation. Keywords: ABC transporter; antibiotic resistance; Gram-positive bacteria; cell wall 1. Introduction ATP-binding cassette (ABC) transporters can be found in all kingdoms of life and Citation: Rismondo, J.; Schulz, L.M. can be subdivided in three main groups: eukaryotic transporters, bacterial importers and Not Just Transporters: Alternative bacterial exporters. In these transporters, the translocation of cognate substrates is driven Functions of ABC Transporters in by ATP hydrolysis [1]. -
Lantibiotics Produced by Oral Inhabitants As a Trigger for Dysbiosis of Human Intestinal Microbiota
International Journal of Molecular Sciences Article Lantibiotics Produced by Oral Inhabitants as a Trigger for Dysbiosis of Human Intestinal Microbiota Hideo Yonezawa 1,* , Mizuho Motegi 2, Atsushi Oishi 2, Fuhito Hojo 3 , Seiya Higashi 4, Eriko Nozaki 5, Kentaro Oka 4, Motomichi Takahashi 1,4, Takako Osaki 1 and Shigeru Kamiya 1 1 Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan; [email protected] (M.T.); [email protected] (T.O.); [email protected] (S.K.) 2 Division of Oral Restitution, Department of Pediatric Dentistry, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; [email protected] (M.M.); [email protected] (A.O.) 3 Institute of Laboratory Animals, Graduate School of Medicine, Kyorin University School of Medicine, Tokyo 181-8611, Japan; [email protected] 4 Central Research Institute, Miyarisan Pharmaceutical Co. Ltd., Tokyo 114-0016, Japan; [email protected] (S.H.); [email protected] (K.O.) 5 Core Laboratory for Proteomics and Genomics, Kyorin University School of Medicine, Tokyo 181-8611, Japan; [email protected] * Correspondence: [email protected] Abstract: Lantibiotics are a type of bacteriocin produced by Gram-positive bacteria and have a wide spectrum of Gram-positive antimicrobial activity. In this study, we determined that Mutacin I/III and Smb (a dipeptide lantibiotic), which are mainly produced by the widespread cariogenic bacterium Streptococcus mutans, have strong antimicrobial activities against many of the Gram-positive bacteria which constitute the intestinal microbiota. -
Structural and Functional Characterization of the Lantibiotic Mutacin 1140
STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF THE LANTIBIOTIC MUTACIN 1140 By JAMES LEIF SMITH A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2002 Copyright 2002 by James Leif Smith This work is dedicated to all my family and friends. Finishing this Ph.D. has come down to two traits that my family instilled in me. One is to never give up, and the other is the lack of good common sense. My friends for standing by my side while I complained moaned and groaned about my life over the last five years. ACKNOWLEDGMENTS First and foremost, I am thankful to my parents for all the love and guidance they have given me throughout my life. I would like to thank my lab mates Cherian Zachariah, Eduardo Espinoza, Matt Carrigan, Ramanan Thirumoorthy, Steve Thomas, Terry Green, and Alexis Harrison for their help and most of all for their friendship. I would like to thank my mentor Arthur S. Edison for teaching me patience. I am very thankful to him for all that he has done for me and for his patience with me. I have learned very much in the time I spent in his lab. I would like to thank my committee members Nancy Denslow, Ben Dunn, Jeff Hillman, and Gerry Shaw for all their help with my project. In particular I would like to thank the Department of Oral Biology and Jeffrey Hillman for supporting my work. I would also like to thank all of my committee members for supporting my decision to enter the MBA program. -
Characterisation of the ATP-Binding Cassette Transporters Of
Characterisation Of The ATP-Binding Cassette Transporters Of Pseudomonas aeruginosa Victoria Grace Pederick Research Centre for Infectious Diseases, Department of Microbiology and Immunology, School of Molecular and Biomedical Sciences, University of Adelaide October 2014 TABLE OF CONTENTS ABSTRACT ............................................................................................................................... V DECLARATION .................................................................................................................... VII COPYRIGHT STATEMENT ................................................................................................ VIII ABBREVIATIONS ................................................................................................................. IX TABLE OF TABLES ............................................................................................................. XII TABLE OF FIGURES ........................................................................................................... XIII ACKNOWLEDGEMENTS .................................................................................................... XV CHAPTER 1: INTRODUCTION ........................................................................................ 1 Pseudomonas aeruginosa ........................................................................................... 1 1.1.1. P. aeruginosa and human disease ......................................................................... 1 1.1.1.1. Cystic -
Enzyme Annotation for Orphan and Novel Reactions Using Knowledge of Substrate Reactive Sites
Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites Noushin Hadadia,1, Homa MohammadiPeyhania,1, Ljubisa Miskovica, Marianne Seijoa,2, and Vassily Hatzimanikatisa,3 aLaboratory of Computational Systems Biology, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland Edited by Sang Yup Lee, Korea Advanced Institute of Science and Technology, Daejeon, South Korea, and approved March 6, 2019 (received for review November 5, 2018) Thousands of biochemical reactions with characterized activities metabolic engineering, synthetic biology applications, and the gap are “orphan,” meaning they cannot be assigned to a specific enzyme, filling of genome-scale models (19). A method for associating de leaving gaps in metabolic pathways. Novel reactions predicted by novo reactions to similarly occurring natural enzymatic reactions pathway-generation tools also lack associated sequences, limiting would allow for the direct experimental implementation of the protein engineering applications. Associating orphan and novel discovered novel reactions or assist in designing new proteins capable reactions with known biochemistry and suggesting enzymes to of catalyzing the proposed biotransformation. catalyze them is a daunting problem. We propose the method BridgIT Computational methods for identifying candidate genes of to identify candidate genes and catalyzing proteins for these re- orphan reactions have mostly been developed on the basis on actions. This method introduces information about the enzyme protein sequence similarity (3, 20–22). The two predominant binding pocket into reaction-similarity comparisons. BridgIT assesses classes of these sequence-based methods revolve around gene/ the similarity of two reactions, one orphan and one well-characterized genome analysis (22–25) and metabolic information (26, 27). -
The Duel Role of Bacteriocins As Anti- and Probiotics
Appl Microbiol Biotechnol (2008) 81:591–606 DOI 10.1007/s00253-008-1726-5 MINI-REVIEW The dual role of bacteriocins as anti- and probiotics O. Gillor & A. Etzion & M. A. Riley Received: 15 July 2008 /Revised: 19 September 2008 /Accepted: 20 September 2008 / Published online: 14 October 2008 # Springer-Verlag 2008 Abstract Bacteria employed in probiotic applications help Keywords Bacteriocin . Probiotic . Oral cavity. to maintain or restore a host’s natural microbial floral. The Gastrointestinal tract . Vagina . Livestock ability of probiotic bacteria to successfully outcompete undesired species is often due to, or enhanced by, the production of potent antimicrobial toxins. The most Introduction commonly encountered of these are bacteriocins, a large and functionally diverse family of antimicrobials found in In 1908, Elie Metchnikoff, working at the Pasteur Institute, all major lineages of Bacteria. Recent studies reveal that observed that a surprising number of people in Bulgaria these proteinaceous toxins play a critical role in mediating lived more than 100 years (Metchnikoff 1908). This competitive dynamics between bacterial strains and closely longevity could not be attributed to the impact of modern related species. The potential use of bacteriocin-producing medicine because Bulgaria, one of the poorest countries in strains as probiotic and bioprotective agents has recently Europe at the time, had not yet benefited from such life- received increased attention. This review will report on extending medical advances. Dr. Metchnikoff further recent efforts involving the use of such strains, with a observed that Bulgarian peasants consumed large quantities particular focus on emerging probiotic therapies for of yogurt. He subsequently isolated bacteria from the humans, livestock, and aquaculture. -
Lipid II: a Central Component in Bacterial Cell Wall Synthesis and a Target for Antibiotics
ARTICLE IN PRESS Prostaglandins, Leukotrienes and Essential Fatty Acids 79 (2008) 117–121 Contents lists available at ScienceDirect Prostaglandins, Leukotrienes and Essential Fatty Acids journal homepage: www.elsevier.com/locate/plefa Lipid II: A central component in bacterial cell wall synthesis and a target for antibiotics Ben de Kruijff Ã, Vincent van Dam, Eefjan Breukink Chemical Biology and Organic Chemistry, Utrecht University, Padualaan 8, Utrecht, The Netherlands abstract The bacterial cell wall is mainly composed of peptidoglycan, which is a three-dimensional network of long aminosugar strands located on the exterior of the cytoplasmic membrane. These strands consist of alternating MurNAc and GlcNAc units and are interlinked to each other via peptide moieties that are attached to the MurNAc residues. Peptidoglycan subunits are assembled on the cytoplasmic side of the bacterial membrane on a polyisoprenoid anchor and one of the key components in the synthesis of peptidoglycan is Lipid II. Being essential for bacterial cell survival, it forms an attractive target for antibacterial compounds such as vancomycin and several lantibiotics. Lipid II consists of one GlcNAc- MurNAc-pentapeptide subunit linked to a polyiosoprenoid anchor 11 subunits long via a pyrophosphate linker. This review focuses on this special molecule and addresses three questions. First, why are special lipid carriers as polyprenols used in the assembly of peptidoglycan? Secondly, how is Lipid II translocated across the bacterial cytoplasmic membrane? And finally, how is Lipid II used as a receptor for lantibiotics to kill bacteria? & 2008 Elsevier Ltd. All rights reserved. 1. Introduction which will be discussed later. Despite considerable knowledge of cell wall synthesis several key questions remained unanswered so The bacterial cell wall is a unique structure. -
Small Cationic Antimicrobial Peptides Delocalize Peripheral Membrane Proteins
Small cationic antimicrobial peptides delocalize PNAS PLUS peripheral membrane proteins Michaela Wenzela, Alina Iulia Chiriacb, Andreas Ottoc, Dagmar Zweytickd, Caroline Maye, Catherine Schumacherf, Ronald Gustg, H. Bauke Albadah, Maya Penkovah, Ute Krämeri, Ralf Erdmannj, Nils Metzler-Nolteh, Suzana K. Strausk, Erhard Bremerl, Dörte Becherc, Heike Brötz-Oesterheltf, Hans-Georg Sahlb, and Julia Elisabeth Bandowa,1 aBiology of Microorganisms, hBioinorganic Chemistry, and iPlant Physiology, eImmune Proteomics, Medical Proteome Center, and jInstitute of Physiological Chemistry, Ruhr University Bochum, 44801 Bochum, Germany; bInstitute for Medical Microbiology, Immunology, and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, 53113 Bonn, Germany; cDepartment of Microbial Physiology and Molecular Biology, Ernst Moritz Arndt University, 17489 Greifswald, Germany; dBiophysics Division, Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; fInstitute for Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany; gDepartment of Pharmaceutical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria; kDepartment of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1; and lDepartment of Biology, University of Marburg, 35037 Marburg, Germany Edited by Michael Zasloff, Georgetown University Medical Center, Washington, DC, and accepted by the Editorial Board February 27, 2014 (received for review October 22, 2013) Short antimicrobial peptides rich -
The Therapeutic Potential of Lantibiotics
IPT 27 2008 4/12/08 09:07 Page 22 Drug Discovery & Development The Therapeutic Potential of Lantibiotics By Steven Boakes Lantibiotics are a growing class of diverse bacterial peptides with a range and Sjoerd Wadman of of structures and functions. They offer real potential in combating bacterial Novacta Biosystems Ltd infections and – in an age when increasing numbers of commonly used antimicrobials are falling prey to bacterial resistance – they could form a significant addition to the therapeutic armamentarium. Lantibiotics are bacterial peptides that are ribosomally that lantibiotics are more common than previously synthesised and post-translationally modified to their suspected, are produced by many different organisms and active form. To date, relatively few lantibiotics have been have a wide variety of biological activities and functions. isolated and characterised, but with recent advances in Structurally, the lantibiotics are characterised by the biotechnology, new members of the class are being presence of lanthionine or methyllanthionine amino acids discovered at an accelerating rate. New discoveries suggest formed through the intramolecular cross-linking of cysteine thiols to dehydrated serine and threonine residues Figure 1: Lantibiotic structures. Modified residues have been coloured red. respectively. Within this diverse group of peptides, many Dha, Didehydroalanine; Dhb, didehydrobutyrine; and Abu, 2-aminobutyric acid compounds with remarkable thermal and metabolic stability exist, and the class may harbour many potential candidates for development as therapeutic agents. This article highlights some of the features of lantibiotics and provides an overview of the therapeutic potential of this compound class. DIVERSITY AND BIOSYNTHESIS The lantibiotics are a diverse class of peptides produced by a range of Gram-positive bacteria (see Figure 1).