Hopanoids Play a Role in Membrane Integrity and Ph Homeostasis in Rhodopseudomonas Palustris TIE-1ᰔ† Paula V
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors JOURNAL OF BACTERIOLOGY, Oct. 2009, p. 6145–6156 Vol. 191, No. 19 0021-9193/09/$08.00ϩ0 doi:10.1128/JB.00460-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1ᰔ† Paula V. Welander,1 Ryan C. Hunter,1 Lichun Zhang,2 Alex L. Sessions,2 Roger E. Summons,3 and Dianne K. Newman1,3,4* Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-380, Cambridge, Massachusetts 021391; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, MC100-23, 1200 E. California Boulevard, Pasadena, California 911252; Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-633, Cambridge, Massachusetts 021393; and Howard Hughes Medical Institute, 4 77 Massachusetts Avenue, 68-171, Cambridge, Massachusetts 02139 Downloaded from Received 3 April 2009/Accepted 6 July 2009 Sedimentary hopanes are pentacyclic triterpenoids that serve as biomarker proxies for bacteria and certain bacterial metabolisms, such as oxygenic photosynthesis and aerobic methanotrophy. Their parent molecules, the bacteriohopanepolyols (BHPs), have been hypothesized to be the bacterial equivalent of sterols. However, the actual function of BHPs in bacterial cells is poorly understood. Here, we report the physiological study of jb.asm.org a mutant in Rhodopseudomonas palustris TIE-1 that is unable to produce any hopanoids. The deletion of the gene encoding the squalene-hopene cyclase protein (Shc), which cyclizes squalene to the basic hopene struc- ture, resulted in a strain that no longer produced any polycyclic triterpenoids.
[Show full text]