Interaction Affinity Between Cytokine Receptor Components on the Cell Surface

Total Page:16

File Type:pdf, Size:1020Kb

Interaction Affinity Between Cytokine Receptor Components on the Cell Surface Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13165–13170, October 1998 Immunology Interaction affinity between cytokine receptor components on the cell surface ADRIAN WHITTY*, NATALYA RASKIN,DIAN L. OLSON,CHRISTOPHER W. BORYSENKO,CHRISTINE M. AMBROSE, CHRISTOPHER D. BENJAMIN, AND LINDA C. BURKLY* Biogen, Inc., 14 Cambridge Center, Cambridge, MA 02142 Edited by Henry Metzger, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Chevy Chase, MD, and approved August 26, 1998 (received for review May 26, 1998) ABSTRACT The anti-common gamma chain (gc) mAb inhibitors that work by blocking the interaction between CP.B8 is shown to inhibit interleukin 4 (IL-4)-dependent receptor chains. The binding affinity between receptor chains proliferation of phytohemagglutinin (PHA) activated T cells on the surface of cells cannot easily be determined by using noncompetitively with respect to cytokine by blocking the soluble forms of the receptor chains, because of the difficulty IL-4-induced heterodimerization of IL-4Ra and gc receptor of accounting for the entropic consequences of the reduction chains. Affinities for the binding of IL-4 to Cos-7 cells in dimensionality that occurs when a binding event is con- transfected with huIL-4Ra, and to PHA blasts expressing strained to the two dimensions of a cell membrane. Conse- both IL-4Ra and gc, were used to estimate the affinity of the quently, no quantitative measure of the interaction affinity key interaction between gc and the binary IL-4RazIL-4 com- between receptor chains on the cell surface has yet been plex on the cell surface. This affinity was defined in terms of achieved. the dimensionless ratio [IL-4RazIL-4zgc]y[IL-4RazIL-4], We describe here an approach that uses readily obtainable which we designate KR. The results show that on PHA blasts experimental data to derive an estimate of the interaction this interaction is relatively weak; KR ' 9, implying that '10% affinity between receptor chains brought about by the binding of the limiting IL-4Ra chain remains free of gc even at of ligand to the cell, using as an example the heterodimeric saturating concentrations of IL-4. This quantitative treatment receptor for interleukin 4 (IL-4) (6) comprising the IL-4 a a g establishes KR as a key measure of the coupling between ligand receptor chain (IL-4R ) and the common gamma chain ( c) binding and receptor activation, providing a basis for func- (7, 8). This receptor belongs to a subfamily of class I cytokine g tional distinctions between different receptors that are acti- receptors all of which use c, and that also includes receptor a g vated by ligand-induced receptor dimerization. subunits for IL-2, IL-7, IL-9, and IL-15. Both IL-4R and c are structurally and functionally related to hGH-R, and de- To understand, at the molecular level, how receptors allow tailed structural models of a ternary complex between IL-4, a g cells to sense and respond to their external environment is a IL-4R , and c have been constructed on the basis of this central goal of receptor research. This question can be ap- homology (9). Mutational analysis of IL-4 supports a mecha- proached by identifying the mechanism by which binding of a nism of ligand-induced receptor dimerization for its receptor ligand to the extracellular portions of a receptor brings about (10). Here, we confirm this mechanism for the IL-4 receptor an activated state of the receptor inside the cell membrane. on activated T cells by using a method based on monoclonal However, a full understanding additionally requires quantita- antibodies, and we use data for the binding of IL-4 to the tive information about the relationship between receptor receptor and its component subunits to estimate the affinity a g occupancy, receptor activation, and downstream response. with which IL-4R interacts with c on the cell membrane in Insights at this level are becoming achievable for certain the presence of bound IL-4. We show that this interaction is members of the large and diverse family of cytokine and relatively weak, and that this property can be exploited by a growth factor receptors comprising two or more noncovalently noncompetitive inhibitor that blocks IL-4-dependent T cell associated subunits (1). A new mechanistic paradigm was proliferation without competing directly against IL-4 binding. introduced when it was proposed that certain of these recep- tors function by a mechanism of ligand-induced receptor MATERIALS AND METHODS dimerization (2), exemplified by the homodimeric receptor for g human growth hormone (hGH-R) (3, 4), a class I cytokine Materials. The murine anti-human c mAb CP.B8, its receptor. This mechanism of receptor activation, illustrated in isotype control (MOPC 21), and their respective Fab frag- Fig. 1, is believed to apply to a significant number of oligomeric ments were prepared as described elsewhere (11). The block- receptors (1, 5) and, importantly, is simple enough to be ing anti-IL-4Ra mAb, MAB2309, was obtained fromR&D amenable to detailed experimental and theoretical analysis. Systems, and its isotype control, UPC10, was from Cappel. a g The simplicity of this mechanism promises insight into how the Vectors encoding the human IL-4R and c receptor chains affinity of receptor for ligand, and of the receptor chains for were prepared, and other reagents obtained, as described each other upon the binding of ligand, is coupled to the elsewhere (11). sensitivity and dynamic range of the cellular response. Im- Cell Proliferation Measurements. Human peripheral blood proving our understanding of these quantitative features of the mononuclear cells (PBMC) were isolated from healthy donors activation mechanism is not only of theoretical interest; the by Ficoll-Paque density gradient centrifugation (Pharmacia affinity between receptor chains in the presence of bound Biotech), and were enriched for T cells by negative selection ligand has important implications for the development of This paper was submitted directly (Track II) to the Proceedings office. a a g The publication costs of this article were defrayed in part by page charge Abbreviations: IL, interleukin; IL-4R , IL-4 receptor chain; c, common gamma chain; hGH-R, human growth hormone receptor; payment. This article must therefore be hereby marked ‘‘advertisement’’ in PBMC, peripheral blood mononuclear cells; PHA, phytohemaggluti- accordance with 18 U.S.C. §1734 solely to indicate this fact. nin. © 1998 by The National Academy of Sciences 0027-8424y98y9513165-6$2.00y0 *To whom reprint requests should be addressed. e-mail: AdrianoWhitty@ PNAS is available online at www.pnas.org. Biogen.com and [email protected]. 13165 Downloaded by guest on September 25, 2021 13166 Immunology: Whitty et al. Proc. Natl. Acad. Sci. USA 95 (1998) g extracellular portion of human c and inhibits the IL-4- dependent proliferation of PHA-activated T cells with an IC50 of '75 mgyml when tested at a single subsaturating concen- tration of IL-4 (11). The binding site for CP.B8 has been mapped (11) to a conformational epitope close to the junction of the two fibronectin type III-like domains that comprise the g extracellular portion of the c molecule. Based on published structural models of the IL-4 receptor complex (9), binding of g FIG. 1. Schematic representation of the ligand-induced receptor CP.B8 to this position on c would be expected to block the g a dimerization mechanism as it applies to class I cytokine receptors (3, interaction of c with IL-4 and possibly also with the IL-4R 4). In the case of the IL-4 receptor, R1 is the IL-4Ra chain and R2 is g chain. A Fab fragment of CP.B8 also blocks IL-4-dependent c. For homodimeric receptors such as hGH-R, R1 and R2 are proliferation in this assay (11). Fig. 2 shows dose-response identical. curves for the ability of IL-4 to stimulate the proliferation of as described in ref. 11. The T cell-enriched PBMC were PHA-activated human T cells, measured at several fixed concentrations of anti-IL-4Ra mAb or CP.B8. Under these cultured in a humidified incubator for 3 days at 37 °C, 5% CO2 at 106 cellsyml in RPMI medium supplemented with 10% fetal conditions, secretion of growth-supporting cytokines is mini- mal, and addition of IL-4 induces proliferation that is essen- bovine serum, 2 mM L-glutamine, 100 unitsyml of penicillin, A 100 mgyml of streptomycin, and 1 mgyml of phytohemagglu- tially IL-4 dependent (11). Fig. 2 shows that the blocking mAb directed against the IL-4Ra chain displays a competitive tinin (PHA; Difco) to polyclonally activate T cells. The pattern of inhibition; inhibition is dose dependent, and the resulting PHA blasts were washed three times with fresh IL-4 dose-response curves are shifted to the right in proportion medium and recultured overnight at 106 cellsyml in medium to the concentration of mAb (Fig. 2A, Inset). This result shows without PHA. The next day the rested cells were transferred that the inhibitory effect of any given concentration of anti- to 96-well flat-bottom plates, and cultured at 5 3 104 cellsywell IL-4Ra mAb can be overcome, and the full proliferative with mAb (CP.B8, anti-IL-4Ra, or control Ig) at the specified response of the cells achieved, by increasing the IL-4 concen- concentrations. After 45 min at 37 °C, recombinant human tration to sufficiently high levels. In contrast, Fig. 2B shows IL-4 (R & D Systems) was added to final concentrations of y that CP.B8 is a noncompetitive inhibitor of IL-4-dependent T 0.015-100 ng ml. Cells were cultured for 40 hr, and prolifer- ' 3 cell proliferation; the EC50 for IL-4 remains constant at 2 ation was measured by the incorporation of H-thymidine ngyml over the entire range of mAb concentrations (Fig.
Recommended publications
  • Receptor-Mediated Dimerization of JAK2 FERM Domains Is Required for JAK2 Activation Ryan D Ferrao, Heidi JA Wallweber, Patrick J Lupardus*
    RESEARCH ARTICLE Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation Ryan D Ferrao, Heidi JA Wallweber, Patrick J Lupardus* Department of Structural Biology, Genentech, Inc., South San Francisco, United States Abstract Cytokines and interferons initiate intracellular signaling via receptor dimerization and activation of Janus kinases (JAKs). How JAKs structurally respond to changes in receptor conformation induced by ligand binding is not known. Here, we present two crystal structures of the human JAK2 FERM and SH2 domains bound to Leptin receptor (LEPR) and Erythropoietin receptor (EPOR), which identify a novel dimeric conformation for JAK2. This 2:2 JAK2/receptor dimer, observed in both structures, identifies a previously uncharacterized receptor interaction essential to dimer formation that is mediated by a membrane-proximal peptide motif called the ‘switch’ region. Mutation of the receptor switch region disrupts STAT phosphorylation but does not affect JAK2 binding, indicating that receptor-mediated formation of the JAK2 FERM dimer is required for kinase activation. These data uncover the structural and molecular basis for how a cytokine-bound active receptor dimer brings together two JAK2 molecules to stimulate JAK2 kinase activity. DOI: https://doi.org/10.7554/eLife.38089.001 Introduction Janus kinases (JAKs) are a family of multi-domain non-receptor tyrosine kinases responsible for pleio- tropic regulatory effects on growth, development, immune and hematopoietic signaling (Leonard and O’Shea, 1998). The JAK family consists of four conserved members, including JAK1, *For correspondence: [email protected] JAK2, JAK3, and TYK2, which are differentially activated in response to cytokine and interferon stim- ulation. JAKs are constitutively bound to the intracellular domains of their cognate cytokine signaling Competing interest: See receptors, and are activated after cytokine-mediated dimerization or rearrangement of these recep- page 18 tors establishes a productive receptor signaling complex (Haan et al., 2006).
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Pancancer IO360 Human Vapril2018
    Gene Name Official Full Gene name Alias/Prev Symbols Previous Name(s) Alias Symbol(s) Alias Name(s) A2M alpha-2-macroglobulin FWP007,S863-7,CPAMD5 ABCF1 ATP binding cassette subfamily F member 1 ABC50 ATP-binding cassette, sub-family F (GCN20),EST123147 member 1 ACVR1C activin A receptor type 1C activin A receptor, type IC ALK7,ACVRLK7 ADAM12 ADAM metallopeptidase domain 12 a disintegrin and metalloproteinase domainMCMPMltna,MLTN 12 (meltrin alpha) meltrin alpha ADGRE1 adhesion G protein-coupled receptor E1 TM7LN3,EMR1 egf-like module containing, mucin-like, hormone receptor-like sequence 1,egf-like module containing, mucin-like, hormone receptor-like 1 ADM adrenomedullin AM ADORA2A adenosine A2a receptor ADORA2 RDC8 AKT1 AKT serine/threonine kinase 1 v-akt murine thymoma viral oncogene homologRAC,PKB,PRKBA,AKT 1 ALDOA aldolase, fructose-bisphosphate A aldolase A, fructose-bisphosphate ALDOC aldolase, fructose-bisphosphate C aldolase C, fructose-bisphosphate ANGPT1 angiopoietin 1 KIAA0003,Ang1 ANGPT2 angiopoietin 2 Ang2 ANGPTL4 angiopoietin like 4 angiopoietin-like 4 pp1158,PGAR,ARP4,HFARP,FIAF,NL2fasting-induced adipose factor,hepatic angiopoietin-related protein,PPARG angiopoietin related protein,hepatic fibrinogen/angiopoietin-related protein,peroxisome proliferator-activated receptor (PPAR) gamma induced angiopoietin-related protein,angiopoietin-related protein 4 ANLN anillin actin binding protein anillin (Drosophila Scraps homolog), actin bindingANILLIN,Scraps,scra protein,anillin, actin binding protein (scraps homolog, Drosophila)
    [Show full text]
  • Wrap.Warwick.Ac.Uk/91754
    Original citation: Hu, Jiamiao and Christian, Mark. (2017) Hormonal factors in the control of the browning of white adipose tissue. Hormone Molecular Biology and Clinical Investigation. Permanent WRAP URL: http://wrap.warwick.ac.uk/91754 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: “The final publication is available at www.degruyter.com ” http://dx.doi.org/10.1515/hmbci-2017-0017 A note on versions: The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. Please see the ‘permanent WRAP URL’ above for details on accessing the published version and note that access may require a subscription. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications DE GRUYTER Hormone Molecular Biology and Clinical Investigation.
    [Show full text]
  • Down Syndrome Acute Lymphoblastic Leukemia, a Highly Heterogeneous
    Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S (2010). Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood, 115(5):1006-1017. University of Zurich Postprint available at: Zurich Open Repository and Archive http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Winterthurerstr. 190 Originally published at: CH-8057 Zurich Blood 2010, 115(5):1006-1017. http://www.zora.uzh.ch Year: 2010 Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S (2010).
    [Show full text]
  • Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements Michelle Lauren Robinette Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2018 Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements Michelle Lauren Robinette Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Robinette, Michelle Lauren, "Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements" (2018). Arts & Sciences Electronic Theses and Dissertations. 1571. https://openscholarship.wustl.edu/art_sci_etds/1571 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Immunology Dissertation Examination Committee: Marco Colonna, Chair Maxim Artyomov Takeshi Egawa Gwen Randolph Wayne Yokoyama Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements by Michelle Lauren Robinette A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements
    [Show full text]
  • IL2RG Hypomorphic Mutation: Identifcation of a Novel Pathogenic Mutation in Exon 8 and a Review of the Literature Che Kang Lim1,2†, Hassan Abolhassani1,3†, Sofa K
    Lim et al. Allergy Asthma Clin Immunol (2019) 15:2 Allergy, Asthma & Clinical Immunology https://doi.org/10.1186/s13223-018-0317-y CASE REPORT Open Access IL2RG hypomorphic mutation: identifcation of a novel pathogenic mutation in exon 8 and a review of the literature Che Kang Lim1,2†, Hassan Abolhassani1,3†, Sofa K. Appelberg1, Mikael Sundin4,5 and Lennart Hammarström1,6* Abstract Background: Atypical X-linked severe combined immunodefciency (X-SCID) is a variant of cellular immunodefciency due to hypomorphic mutations in the interleukin 2 receptor gamma (IL2RG) gene. Due to a leaky clinical phenotype, diagnosis and appropriate treatment are challenging in these patients. low Case presentation: We report a 16-year-old patient with a ­T ­B+ ­NK+ cellular immunodefciency due to a novel nonsense mutation in exon 8 (p.R328X) of the IL2RG gene. Functional impairment of the IL2RG was confrmed by IL2-Janus kinase 3-signal transducer and activator of transcription signaling pathway investigation. In addition, the characteristics of the mutations previously described in 39 patients with an atypical phenotype were reviewed and analyzed from the literature. Conclusion: This is the frst report of an atypical X-SCID phenotype due to an exon 8 mutation in the IL2RG gene. The variability in the phenotypic spectrum of classic X-SCID associated gene highlights the necessity of multi-disciplinary cooperation vigilance for a more accurate diagnostic workup. Keywords: Interleukin 2 receptor gamma, Atypical severe combined immunodefciency, Hypomorphic mutations Background mutations lead to the production of a nonfunctional γC Interleukin 2 receptor gamma (IL2RG) is an important or prevent the protein from being produced, resulting in signaling component for IL2, IL4, IL7, IL9, IL15, and an arrest in lymphocyte development.
    [Show full text]
  • Role of the Tyrosine Kinase JAK2 in Signal Transduction by Growth Hormone
    Pediatr Nephrol (2000) 14:550–557 © IPNA 2000 REVIEW ARTICLE Christin Carter-Su · Liangyou Rui James Herrington Role of the tyrosine kinase JAK2 in signal transduction by growth hormone Received: 15 May 1999 / Revised: 23 December 1999 / Accepted: 2 January 2000 Abstract Chronic renal failure in children results in im- Key words Growth · Growth hormone · JAK2 · Insulin paired body growth. This effect is so severe in some receptor substrates · Signal transducers and activators of children that not only does it have a negative impact on transcription · SH2-B their self-image, but it also affects their ability to carry out normal day-to-day functions. Yet the mechanism by which chronic renal failure causes short stature is not Introduction well understood. Growth hormone (GH) therapy increas- es body height in prepubertal children, suggesting that a As early as 1973 [1], growth hormone (GH) was recog- better understanding of how GH promotes body growth nized as binding to a membrane-bound receptor. Yet the may lead to better insight into the impaired body growth mechanism by which GH binding to its receptor elicits in chronic renal failure and therefore better therapies. the diverse responses to GH remained elusive for several This review discusses what is currently known about more decades. Even cloning of the GH receptor [2] in how GH acts at a cellular level. The review discusses 1987 did not shed light on the mechanism by which the how GH is known to bind to a membrane-bound receptor GH receptor functioned, because the deduced amino acid and activate a cytoplasmic tyrosine kinase called Janus sequence of the cloned rabbit and human liver GH recep- kinase (JAK) 2.
    [Show full text]