A Stable Sub-Orbital Permanent Structure Based on Readily Attainable Technological Advancements

Total Page:16

File Type:pdf, Size:1020Kb

A Stable Sub-Orbital Permanent Structure Based on Readily Attainable Technological Advancements A Stable Sub-Orbital Permanent Structure Based on Readily Attainable Technological Advancements Philip Swan Brian Baker Sean Conner Gunnar Clovis Chris Fornof Alexander Halaszyn Alba Misciagna C. Prado Nickel 2017 A Tethered Ring is a dynamic structure that can cost-effectively support space launch facilities, transportation infrastructure, and a sizable human settlement at high altitudes. An altitude of 32km and a population of 250,000 is shown to be technologically and economically feasible using 2017 science and technology. A minimally viable implementation of The Tethered Ring is described. It has a diameter like that of the Pacific Ocean. It stays aloft by generating and properly combining inertial forces with tensile forces to offset the pull of gravity. The inertial forces are produced by the circular motion of magnetically levitated rings within the pipelines, and the tensile forces are generated by appropriately tethering the pipeline bundle to the side of the planet that protrudes through the ring, using tethers made of strong, light-weight, industrial fiber. The entire structure can be fabricated on Earth and neither its construction nor its deployment depends on a pre-existing space infrastructure or space-based industry. The deployed structure is resilient to catastrophic failure because its precision-guided fast-moving components are: a) not exposed to seismic or climatic battering, and b) safely above and thus out of range of tacit civilizational threats, such attacks involving torpedoes or commandeered aircraft. The tethered ring is an optimal stepping-stone infrastructure for furnishing humanity with a safe, affordable, and sustainable means to escape Earth’s gravity, expand its civilization into space, and ultimately evolve into a multi-planetary species. Contents A Stable Sub-Orbital Permanent Structure Based on Readily Attainable Technological Advancements ...................... 1 Introduction ................................................................................................................................................................... 3 Business Models ............................................................................................................................................................ 6 Transportation Services ............................................................................................................................................. 6 Real Estate ................................................................................................................................................................. 8 1 Low Cost Space Launch .............................................................................................................................................. 9 Economic Analysis ................................................................................................................................................... 10 Technical Specifications ........................................................................................................................................... 12 Architecture ................................................................................................................................................................. 14 How Does It Stay Aloft? ........................................................................................................................................... 14 How is it Constructed? ............................................................................................................................................. 19 Are Gyroscopic Forces an Operational Concern? .................................................................................................... 22 How is a Moving Ring Magnetically Levitated? ....................................................................................................... 22 How is the Moving Ring Accelerated/Decelerated? ................................................................................................ 22 How are the Tethers Designed? .............................................................................................................................. 23 What Material(s) are the Tethers Constructed From? ............................................................................................ 23 How are the Anchors Designed? ............................................................................................................................. 23 Wind Shear Compensation ...................................................................................................................................... 23 Why Would People Choose to Live There?.............................................................................................................. 26 How are People and Cargo Brought up to The Ring? .............................................................................................. 27 How Does the Space Launch System Work? ........................................................................................................... 28 What Altitude is Needed for a Maglev Launch Accelerator? ................................................................................... 29 What Launch Rates Can It Achieve? ........................................................................................................................ 31 What are some comparable projects/endeavors? .................................................................................................. 31 Logistics ....................................................................................................................................................................... 31 How do you move it into position after it has been raised? ................................................................................... 31 How can the Traversed Countries be Convinced to Support the Project? .............................................................. 32 How is the Moving Ring Isolated from Perturbations? ............................................................................................ 32 How do you Demolish it at the End of its Operational Life? .................................................................................... 33 Achieving Sufficient Levels of Component and System Reliability .......................................................................... 33 How is it Maintained? .............................................................................................................................................. 33 Hazard and Risk Profile Assessment ............................................................................................................................ 34 Natural Hazards ....................................................................................................................................................... 34 Space Radiation ................................................................................................................................................... 34 Intense Magnetic Storms ..................................................................................................................................... 34 Meteors and Space Debris ................................................................................................................................... 34 Atomic Oxygen ..................................................................................................................................................... 34 Volcanic Eruptions and Ash-clouds ...................................................................................................................... 34 Sprites and Their Siblings ..................................................................................................................................... 35 Seismic Events ..................................................................................................................................................... 35 Forest Fires .......................................................................................................................................................... 35 Icebergs and Ice Sheets ....................................................................................................................................... 35 2 Cyclones ............................................................................................................................................................... 35 Anthropogenic Hazards ........................................................................................................................................... 36 Terrorism ............................................................................................................................................................. 36 Engineering Hazards ................................................................................................................................................ 36 Habitats.................................................................................................................................................................... 37 How Much Less Would a Visitor or Resident Weigh on the Ring? (Include in Habitats?) ....................................... 38 What is the inter-habitat transit system like? ........................................................................................................
Recommended publications
  • NIAC 2002-2003 Annual Report
    TABLE OF CONTENTS EXECUTIVE SUMMARY ...............................................................................................................................................1 ACCOMPLISHMENTS Summary ................................................................................................................................................................2 Call for Proposals CP 01-01 (Phase II)...................................................................................................................2 Call for Proposals CP 01-02 (Phase I)....................................................................................................................3 Call for Proposals CP 02-01 (Phase II)...................................................................................................................4 Call for Proposals CP 02-02 (Phase I)....................................................................................................................5 Phase II Site Visits..................................................................................................................................................5 Infusion of Advanced Concepts into NASA.............................................................................................................6 Survey of Technologies to Enable NIAC Concepts.................................................................................................8 Special Recognition for NIAC Concept ...................................................................................................................9
    [Show full text]
  • Development and Testing of an Axial Halbach Magnetic Bearing
    NASA/TM—2006-214357 Development and Testing of an Axial Halbach Magnetic Bearing Dennis J. Eichenberg, Christopher A. Gallo, and William K. Thompson Glenn Research Center, Cleveland, Ohio July 2006 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • Stable Orbits of Rigid, Rotating, Precessing, Massive Rings
    Stable Orbits of Rigid, Rotating, Precessing, Massive Rings Edward D. Rippert Whitehawk Systems, 3 Whitehawk Circle, Boise, ID, 83716, USA. [email protected] The dynamics of a rigid, rotating, precessing, massive ring orbiting a point mass within the perimeter of the ring are considered. It is demonstrated that orbits dynamically stable against perturbations in three dimensions exist for a range of rigid body rotation parameters of the ring. Previous analysis and some well-known works of fiction have considered the stability of both rigid and flexible, non-precessing ring systems and found that they are unstable in the plane of the ring unless an active stabilization system is employed. There does not appear to be any analyses previously published considering rigid body precession of such a system or that demonstrate passive stability in three dimensions. Deviations from perfect rigidity and possible applications of such a system are discussed. Keywords: Orbital Ring, Ring World, Stability, Precession, Magic Angle I. Introduction Solid rings rotating about a central mass have been considered for various applications ranging from a ring of geosynchronous satellites around the Earth [1] (Polyakov-Ring) to fictional accounts of a gigantic artificial habitat around a star rotating to provide artificial gravity [2] (Niven-Ring). A Polyakov-Ring rotates at or slightly above the orbital speed at its distance from the central mass. As such it lacks significant tension on the ring and is a flexible structure. It has been shown that such a structure is unstable against perturbations in the plane of the ring but can be stabilized by a feedback control system controlling the local length of ring segments [3].
    [Show full text]
  • PERSEVERANCE: Rocketing to Mars with STEM
    PERSEVERANCE: Rocketing to Mars with STEM GRADE LEVELS MISSION This activity is appropriate for grades 3-8. Design fins for a foam rocket. VOCABULARY MATERIALS LAUNCH VEHICLE: A launch vehicle provides the velocity » 30 cm piece of polyethylene foam pipe insulation needed by a spacecraft to escape Earth’s gravity and set it (for 1/2” size pipe) on its course for space exploration. » Rubber band (size 64) TRAJECTORY: The path followed by a projectile flying or » Duct tape an object moving under the action of given forces. » Scissors » Meter stick/ruler » Two 4x6 index cards ABOUT THIS ACTIVITY On July 30, 2020, at 4:50 a.m., an Atlas V-541 rocket was launched from Cape Canaveral Air Force Station, Florida. The Atlas V is one of the largest rockets available for interplanetary flight and delivering things into space. The rocket departed Earth at a speed of about 24,600 mph (about 39,600 kph). Its launch was the start of the mission to deliver the Mars rover, Perseverance. After six-and-a-half months and about 300 million miles (480 million kilometers), the rover will reach Mars and land on the 28-mile-wide Jezero Crater (Feb. 18, 2021). Once the rover reaches Mars, its mission will be to look for signs of ancient life and collect samples of rock and soil. However, the rover could not do all of this important data collection without an energy source to power it. Idaho National Laboratory is playing a major role in powering Perseverance. INL’s Space Nuclear Power and Isotope Technologies Division assembles and tests Radioisotope Power Systems.
    [Show full text]
  • Graphene Infused Space Industry a Discussion About Graphene
    Graphene infused space industry a discussion about graphene NASA Commercial Space Lecture Series Our agenda today Debbie Nelson The Nixene Journal Rob Whieldon Introduction to graphene and Powder applications Adrian Nixon State of the art sheet graphene manufacturing technology Interactive session: Ask anything you like Rob Whieldon Adrian Nixon Debbie Nelson American Graphene Summit Washington D.C. 2019 https://www.nixenepublishing.com/nixene-publishing-team/ Who we are Rob Whieldon Rob Whieldon is Operations Director for Nixene Publishing having spent over 20 years supporting businesses in the SME community in the UK. He was the Executive Director of the prestigious Goldman Sachs 10,000 Small Businesses Adrian Nixon Debbie Nelson programme in Yorkshire and Humber and Adrian began his career as a scientist and is a Chartered Chemist and Debbie has over two decades is the former Director of Small Business Member of the Royal Society of experience in both face-forward and Programmes at Leeds University Business Chemistry. He has over 20 years online networking. She is active with School. He is a Gold Award winner from experience in industry working at ongoing NASA Social activities, and the UK Government Small Business Allied Colloids plc, an international enjoyed covering the Orion capsule Charter initiative and a holder of the EFMD chemicals company (now part of water test and Apollo 50th (European Framework for Management BASF). Adrian is the CEO and Editor anniversary events at Marshall Development) Excellence in Practice in Chief of Nixene Publishing, which Space Center. Debbie serves as Award. More recently he was a judge for he established in the UK in 2017.
    [Show full text]
  • Pathways to Colonization David V
    Pathways To Colonization David V. Smitherman, Jr. NASA, Marshall Space F’light Center, Mail CoLFDO2, Huntsville, AL 35812,256-961-7585, Abstract. The steps required for space colonization are many to grow fiom our current 3-person International Space Station,now under construction, to an inhstmcture that can support hundreds and eventually thousands of people in space. This paper will summarize the author’s fmdings fiom numerous studies and workshops on related subjects and identify some of the critical next steps toward space colonization. Findings will be drawn from the author’s previous work on space colony design, space infirastructure workshops, and various studies that addressed space policy. In cmclusion, this paper will note that siBnifcant progress has been made on space facility construction through the International Space Station program, and that si&icant efforts are needed in the development of new reusable Earth to Orbit transportation systems. The next key steps will include reusable in space transportation systems supported by in space propellant depots, the continued development of inflatable habitat and space elevator technologies, and the resolution of policy issues that will establish a future vision for space development A PATH TO SPACE COLONIZATION In 1993, as part of the author’s duties as a space program planner at the NASA Marshall Space Flight Center, a lengthy timeline was begun to determine the approximate length of time it might take for humans to eventually leave this solar system and travel to the stars. The thought was that we would soon discover a blue planet around another star and would eventually seek to send a colony to explore and expand our presence in this galaxy.
    [Show full text]
  • Exploring Design and Policy Options for Orbital Infrastructure Projects by Lieutenant Junior Grade Benjamin L. Putbrese, U.S. Na
    Exploring Design and Policy Options for Orbital Infrastructure Projects by Lieutenant Junior Grade Benjamin L. Putbrese, U.S. Navy B.S. Aerospace Engineering United States Naval Academy, 2013 Submitted to the Engineering Systems Division in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology June 2015 ©2015 Benjamin L. Putbrese. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: ________________________________________________________________ Engineering Systems Division May 8, 2015 Certified by:_______________________________________________________________________ Daniel E. Hastings Cecil and Ida Green Education Professor of Engineering Systems and Aeronautics and Astronautics Thesis Supervisor Accepted by: _____________________________________________________________________ Dava J. Newman Professor of Aeronautics and Astronautics and Engineering Systems Director, Technology and Policy Program 2 This work is sponsored by the United States Department of Defense under Contract FA8721-05- C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government. 3 Exploring Design and Policy Options for Orbital Infrastructure Projects by Lieutenant Junior Grade Benjamin L.
    [Show full text]
  • Advanced Space Propulsion
    ADVANCED SPACE PROPULSION Robert H. Frisbee, Ph.D. Jet Propulsion Laboratory California Institute of Technology Pasadena California Transportation Beyond 2000: Engineering Design for the Future September 26-28, 1995 693 ABSTRACT This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and overnment sectors identified in the Commercial Space Transportation Study (CSTS). imilarly, in the area of space exploration, all of the relatively "easy" missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, Isp) and typically show the most benefit for relatively "big" missions (i.e., missions with large payloads or &V, or a large overall mission model).
    [Show full text]
  • Space Propulsion.Pdf
    Deep Space Propulsion K.F. Long Deep Space Propulsion A Roadmap to Interstellar Flight K.F. Long Bsc, Msc, CPhys Vice President (Europe), Icarus Interstellar Fellow British Interplanetary Society Berkshire, UK ISBN 978-1-4614-0606-8 e-ISBN 978-1-4614-0607-5 DOI 10.1007/978-1-4614-0607-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011937235 # Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to three people who have had the biggest influence on my life. My wife Gemma Long for your continued love and companionship; my mentor Jonathan Brooks for your guidance and wisdom; my hero Sir Arthur C. Clarke for your inspirational vision – for Rama, 2001, and the books you leave behind. Foreword We live in a time of troubles.
    [Show full text]
  • Unit VI Superconductivity JIT Nashik Contents
    Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ...............................................
    [Show full text]
  • Space Elevators: a Feasible Solution for Sending People and Goods Into Space More Cost Effectively
    International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015 ISSN 2091-2730 Space Elevators: A Feasible Solution for Sending People and Goods into Space More Cost Effectively Rupesh Aggarwal1, Pavleen Singh Bali2, Pranay Kami3, A.K. Raghav4 1Teaching Assistant, Department of Aerospace Engg. Amity University Gurgaon, Haryana, India 2Research Associate, Department of E & C Engg. Amity University Gurgaon, Haryana, India 3UG, Department of Aerospace Engg., Amity University Gurgaon, Haryana, India 4M.Tech. IISc Bangalore, Phd. IIT Delhi, Director- IR&D, Amity University Haryana, India Abstract— The Present study focuses on the fascinating concept of Space Elevators. Object of this study is to get introduced with every aspect in Designing, Working & Construction of Space Elevators. It‟s a concept in which tether is used to uplift any type of cargo or personnel from Earth surface to an orbit in space. Such invention not only becomes the new path for heavy loads to get into space but also becomes a cheap one. Also from the top of it, loads can be launch in any desired direction. By this not only the cost of the launch through rocket gets reduced but also the personnel handling this launch i.e. reduction of human error too. Perfect suitable material for such operation is Carbon Nano-tube which hundred times stronger and ten times lighter then Steel. In coming 50 years, it might be possible that many space elevators are ready to launch the spacecraft in space. Its application is not just only limited to the launching but also it can help in carrying heavy payloads to International Space Stations.
    [Show full text]
  • Space Elevator a New Way to Gain Orbit Adil Oubou 5/3/2014
    Space Elevator A New Way To Gain Orbit Adil Oubou 5/3/2014 Abstract After 56 years of great space exploration, the space flight program found itself asking an intriguing question: What’s next? Should humans constrain the space program to low Earth orbit, revisit the moon, or simply go beyond anything they have done before? No matter what the next step is, there is a great need for a reliable, safe, affordable and easy method of gaining orbit. The space elevator concept discussed in this report, based on the design provided in Peter Swan’s book “Space Elevators: An Assessment of the Technological Feasibility and the Way Forward“, shines the light on an economically and technologically feasible solution within the next two decades that will lift payloads including humans from the earth’s surface into space at a greater capacity than current rockets while significantly lowering cost to $500/kg. The system design includes a tether line that extends from the Earth’s surface to an altitude of 100,000 km that utilizes electrical motor driven climbers to gain orbit. The success feasibility of this space flight system is highly dependent on the development of Carbon Nanotube (CNT) material, which will provide high strength and low mass properties for the space elevator system components to withstand environmental and operational stresses. Table of Contents 1.0 The New Way to Orbit ....................................................................................................... 4 2.0 Why Space Elevator? ........................................................................................................
    [Show full text]