Channels and Valleys on Mars : Cold Climate Features Formed As a Result of a Thickening Cryosphere
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology and Geometry of Valles Marineris Landslides Cathy Quantin, Pascal Allemand, Christophe Delacourt
Morphology and geometry of Valles Marineris landslides Cathy Quantin, Pascal Allemand, Christophe Delacourt To cite this version: Cathy Quantin, Pascal Allemand, Christophe Delacourt. Morphology and geometry of Valles Marineris landslides. Planetary and Space Science, Elsevier, 2004, 52 (11), pp.1011-1022. 10.1016/j.pss.2004.07.016. hal-00102264 HAL Id: hal-00102264 https://hal.archives-ouvertes.fr/hal-00102264 Submitted on 17 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Morphology and geometry of Valles Marineris landslides C. QuantinÃ, P. Allemand, C. Delacourt Universite´ Claude Bernard Lyon-1 & ENS Lyon, Laboratoire Sciences de la Terre, UMR 5570 CNRS, Bat ge´ode-6e e´tage, 2 rue Raphae¨l Dubois, 69622 Villeurbanne Cedex, France The walls of the Valles Marineris canyons are affected by about 45 landslides. The study of these landslides provides a test of the hypothesis of processes having affected Martian wallslopes after their formation. The dynamics of Valles Marineris landslides are controversial : either the landslides are interpreted as large debris flows or as dry rock avalanches. Their morphology and their topography are basic parameters to understand their dynamics. From topographic MOLA data and remote sensing images acquired with different spatial resolutions (Viking, THEMIS, MOC), the 3D geometry of 45 landslides of Valles Marineris has been studied. -
Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al. -
Drainage Network Development in the Keanakāko'i
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E08009, doi:10.1029/2012JE004074, 2012 Drainage network development in the Keanakāko‘i tephra, Kīlauea Volcano, Hawai‘i: Implications for fluvial erosion and valley network formation on early Mars Robert A. Craddock,1 Alan D. Howard,2 Rossman P. Irwin III,1 Stephen Tooth,3 Rebecca M. E. Williams,4 and Pao-Shin Chu5 Received 1 March 2012; revised 11 June 2012; accepted 4 July 2012; published 22 August 2012. [1] A number of studies have attempted to characterize Martian valley and channel networks. To date, however, little attention has been paid to the role of lithology, which could influence the rate of incision, morphology, and hydrology as well as the characteristics of transported materials. Here, we present an analysis of the physical and hydrologic characteristics of drainage networks (gullies and channels) that have incised the Keanakāko‘i tephra, a basaltic pyroclastic deposit that occurs mainly in the summit area of Kīlauea Volcano and in the adjoining Ka‘ū Desert, Hawai‘i. The Keanakāko‘i tephra is up to 10 m meters thick and largely devoid of vegetation, making it a good analog for the Martian surface. Although the scales are different, the Keanakāko‘i drainage networks suggest that several typical morphologic characteristics of Martian valley networks may be controlled by lithology in combination with ephemeral flood characteristics. Many gully headwalls and knickpoints within the drainage networks are amphitheater shaped, which results from strong-over-weak stratigraphy. Beds of fine ash, commonly bearing accretionary lapilli (pisolites), are more resistant to erosion than the interbedded, coarser weakly consolidated and friable tephra layers. -
Magazine Nº 10
Gdańsk · Sopot · Gdynia SVENSK UTGÅVA MAGAZINE SUMMER 2019 Nº 10 INTIMATE AND LUXURIOUS APARTMENTS IN SOPOT HOTEL ,,MY STORY SOPOT combines high comfort with an APARTMENTS’’ is located in an unique atmosphere of the place unique place, near the Sopot Pier, It is worth to start your day the park and the sandy beach. with our healthy and delicious Our Hotel is perfect for holidays breakfasts, always prepared from with children, a romantic weekend the highest quality products. for two or a business trip. Evenings in intimate bar with Lovers of a healthy lifestyle will good book and favourite drink in also find something for themselves your hand will be the most relax- in the park next to My Story Sopot ing ending of your day. Apartments- the ideal place for My Story Sopot Apartments morning or evening gymnastic. impresses with carefully selected For our guests there are scent and natural cosmetics with available 17 intimate suites pearls, gold, algae and valuable decorated in a subtly elegant natural oils. style with the use of the highest In addition, you can charge an quality materials. Each apartment electric vehicle in our parking lot. PÅ SVENSKA MY STORY SOPOT gans. Samtliga är byggda med APARTMENTS ligger på en fan- material av högsta kvalite som tastisk plats nära en grönskande kombinerar hög komfort med en park, en vacker sandstrand men härlig atmosfär. även den berömda träpiren. Starta dagen med en hälsosam Vårt hotell är ett perfekt bo- och nyttig frukost med bara frä- ende för en semester med bar- scha och näringsrika ingredienser nen, en romantisk weekend eller och avsluta den i vår mysigt in- varför inte en affärsresa? redda bar med ett glas i din ena Alla med en hälsosam livsstil hand och en bok i den andra. -
Review of the MEPAG Report on Mars Special Regions
THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency. -
Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation -
Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost
NASA/TM-98-206538 Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost G. James, Ph.D. G. Chamitoff, Ph.D. D. Barker, M.S., M.A. April 1998 The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated to CONTRACTOR REPORT. Scientific and the advancement of aeronautics and space technical findings by NASA-sponsored science. The NASA Scientific and Technical contractors and grantees. Information (STI) Program Office plays a key part in helping NASA maintain this important CONFERENCE PUBLICATION. Collected role. papers from scientific and technical confer- ences, symposia, seminars, or other meetings The NASA STI Program Office is operated by sponsored or cosponsored by NASA. Langley Research Center, the lead center for NASA's scientific and technical information. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office provides access technical, or historical information from to the NASA STI Database, the largest NASA programs, projects, and mission, often collection of aeronautical and space science STI concerned with subjects having substantial in the word. The Program Office is also public interest. NASA's institutional mechanism for disseminating the results of its research and • TECHNICAL TRANSLATION. development activities. These results are English-language translations of foreign scientific published by NASA in the NASA STI Report and technical material pertinent to NASA's Series, which includes the following report mission. types: Specialized services that complement the STI TECHNICAL PUBLICATION. Reports of Program Office's diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive results.., even providing videos. -
16. Ice in the Martian Regolith
16. ICE IN THE MARTIAN REGOLITH S. W. SQUYRES Cornell University S. M. CLIFFORD Lunar and Planetary Institute R. O. KUZMIN V.I. Vernadsky Institute J. R. ZIMBELMAN Smithsonian Institution and F. M. COSTARD Laboratoire de Geographie Physique Geologic evidence indicates that the Martian surface has been substantially modified by the action of liquid water, and that much of that water still resides beneath the surface as ground ice. The pore volume of the Martian regolith is substantial, and a large amount of this volume can be expected to be at tem- peratures cold enough for ice to be present. Calculations of the thermodynamic stability of ground ice on Mars suggest that it can exist very close to the surface at high latitudes, but can persist only at substantial depths near the equator. Impact craters with distinctive lobale ejecta deposits are common on Mars. These rampart craters apparently owe their morphology to fluidhation of sub- surface materials, perhaps by the melting of ground ice, during impact events. If this interpretation is correct, then the size frequency distribution of rampart 523 524 S. W. SQUYRES ET AL. craters is broadly consistent with the depth distribution of ice inferred from stability calculations. A variety of observed Martian landforms can be attrib- uted to creep of the Martian regolith abetted by deformation of ground ice. Global mapping of creep features also supports the idea that ice is present in near-surface materials at latitudes higher than ± 30°, and suggests that ice is largely absent from such materials at lower latitudes. Other morphologic fea- tures on Mars that may result from the present or former existence of ground ice include chaotic terrain, thermokarst and patterned ground. -
Pacing Early Mars Fluvial Activity at Aeolis Dorsa: Implications for Mars
1 Pacing Early Mars fluvial activity at Aeolis Dorsa: Implications for Mars 2 Science Laboratory observations at Gale Crater and Aeolis Mons 3 4 Edwin S. Kitea ([email protected]), Antoine Lucasa, Caleb I. Fassettb 5 a Caltech, Division of Geological and Planetary Sciences, Pasadena, CA 91125 6 b Mount Holyoke College, Department of Astronomy, South Hadley, MA 01075 7 8 Abstract: The impactor flux early in Mars history was much higher than today, so sedimentary 9 sequences include many buried craters. In combination with models for the impactor flux, 10 observations of the number of buried craters can constrain sedimentation rates. Using the 11 frequency of crater-river interactions, we find net sedimentation rate ≲20-300 μm/yr at Aeolis 12 Dorsa. This sets a lower bound of 1-15 Myr on the total interval spanned by fluvial activity 13 around the Noachian-Hesperian transition. We predict that Gale Crater’s mound (Aeolis Mons) 14 took at least 10-100 Myr to accumulate, which is testable by the Mars Science Laboratory. 15 16 1. Introduction. 17 On Mars, many craters are embedded within sedimentary sequences, leading to the 18 recognition that the planet’s geological history is recorded in “cratered volumes”, rather than 19 just cratered surfaces (Edgett and Malin, 2002). For a given impact flux, the density of craters 20 interbedded within a geologic unit is inversely proportional to the deposition rate of that 21 geologic unit (Smith et al. 2008). To use embedded-crater statistics to constrain deposition 22 rate, it is necessary to distinguish the population of interbedded craters from a (usually much 23 more numerous) population of craters formed during and after exhumation. -
FROM WET PLANET to RED PLANET Current and Future Exploration Is Shaping Our Understanding of How the Climate of Mars Changed
FROM WET PLANET TO RED PLANET Current and future exploration is shaping our understanding of how the climate of Mars changed. Joel Davis deciphers the planet’s ancient, drying climate 14 DECEMBER 2020 | WWW.GEOLSOC.ORG.UK/GEOSCIENTIST WWW.GEOLSOC.ORG.UK/GEOSCIENTIST | DECEMBER 2020 | 15 FEATURE GEOSCIENTIST t has been an exciting year for Mars exploration. 2020 saw three spacecraft launches to the Red Planet, each by diff erent space agencies—NASA, the Chinese INational Space Administration, and the United Arab Emirates (UAE) Space Agency. NASA’s latest rover, Perseverance, is the fi rst step in a decade-long campaign for the eventual return of samples from Mars, which has the potential to truly transform our understanding of the still scientifi cally elusive Red Planet. On this side of the Atlantic, UK, European and Russian scientists are also getting ready for the launch of the European Space Agency (ESA) and Roscosmos Rosalind Franklin rover mission in 2022. The last 20 years have been a golden era for Mars exploration, with ever increasing amounts of data being returned from a variety of landed and orbital spacecraft. Such data help planetary geologists like me to unravel the complicated yet fascinating history of our celestial neighbour. As planetary geologists, we can apply our understanding of Earth to decipher the geological history of Mars, which is key to guiding future exploration. But why is planetary exploration so focused on Mars in particular? Until recently, the mantra of Mars exploration has been to follow the water, which has played an important role in shaping the surface of Mars. -
Impacts and Asteroids Olivier Barnouin
Impacts and Asteroids Olivier Barnouin JHU/APL JHU Earth and Planetary Science Dept. N. Izenburg1, C.M. Ernst1, D. Crawford2 , M. Cintala3, K. Wada4 1 Johns Hopkins University Applied Physics Laboratory 2 Sandia National Laboratory 3 NASA Johnson Space Center 4 Hokaido Univ., Japan Planetary surface observations and processes ● Examine observations of granular processes in planetary environments – Mars: mass movements – landslides and ejecta – Eros: softening of terrain; destruction of craters; influence of pre- existing terrain – Itokawa: lack of crater; landslide ● Explore granular mechanism for observed features ● Objective: What are we learning about the origin and evolution of these celestial objects? Martian landslides and ejecta ● Are landslides and fluidized ejecta indicators of water? ● If yes: – How much? – When in geological history? ● Step 1: Can a dry granular make these structures? Lunae Planum D~30km Ganges Chasm Mars long run-out landslides – resemble terrestrial ones ● Striations ● Ramparts (subtle) ● Distal boulders (sometimes) ● Water - minor contributor ? ● Large rock masses ● Broken rock cannot maintain high pore pressure Sherman Glacier Rock Avalanche (5km across frame) Simple continuum model ● Combine h ● Conservation of mass ● Semi-empirical kinematic formalism k −1 x ho h(x , t)=H t− u ku h [ o ( ) ] ● k = 1 basal glide -steep velocity gradient – Maintains stratigraphy – Subtle rampart ● k = 3/2 debris flow-like velocity gradient Such a velocity profile possible? ● Cambell (1989) proposed this concept ● 2-D DEM calculations – velocity profile not as steep as anticpated ● Could geometry matter? Water still needed? Ejecta on most planetary surfaces ● Moon, Mercury, Icy satellites ● Hummocky inner ejecta ● Development of radial features ● Field of secondaries ● Crater rays Result of ballistic ejection and emplacement of ejecta Image: NASA JSC Vertical Gun Range (courtesy: M. -
Episodic Flood Inundations of the Northern Plains of Mars
www.elsevier.com/locate/icarus Episodic flood inundations of the northern plains of Mars Alberto G. Fairén,a,b,∗ James M. Dohm,c Victor R. Baker,c,d Miguel A. de Pablo,b,e Javier Ruiz,f Justin C. Ferris,g and Robert C. Anderson h a CBM, CSIC-Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain b Seminar on Planetary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain c Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA d Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA e ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain f Departamento de Geodinámica, Universidad Complutense de Madrid, 28040 Madrid, Spain g US Geological Survey, Denver, CO 80225, USA h Jet Propulsion Laboratory, Pasadena, CA 91109, USA Received 19 December 2002; revised 20 March 2003 Abstract Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems, and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to have sourced outburst floodwaters that sculpted the outflow channels, and ponded to form various hypothesized oceans, seas, and lakes episodically through time. These floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains.