(Erysiphaceae, Ascomycota), a Powdery Mildew Species Found on Deutzia Parviflora (Hydrangeaceae) with Unusual Appendages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview of the Genus Phyllactinia (Ascomycota, Erysiphales) in Azerbaijan
Plant & Fungal Research (2018) 1(1): 9-17 © The Institute of Botany, ANAS, Baku, Azerbaijan http://dx.doi.org/10.29228/plantfungalres.2 December 2018 Overview of the genus Phyllactinia (Ascomycota, Erysiphales) in Azerbaijan Dilzara N. Aghayeva1 Key Words: distribution, ectoparasitism, endoparasit- Lamiya V. Abasova ism, host plant, plant pathogen, powdery mildews Institute of Botany, Azerbaijan National Academy of Sciences, Badamdar 40, Baku, AZ1004, Azerbaijan INTRODUCTION Susumu Takamatsu Graduate School of Bioresources, Mie University, Powdery mildews are one of the frequently encoun- 1577 Kurima-Machiya, Tsu 514-8507, Japan tered plant pathogens and most of them are epiphytic (14 genera from 18), in which they tend to produce hy- Abstract: Intergeneric diversity of powdery mildews phae and reproductive structures on surface of leaves, within the genus Phyllactinia in Azerbaijan was inves- young shoots and inflorescence [Braun, Cook, 2012; tigated using morphological approaches based on re-ex- Glawe, 2008]. These fungi absorb nutrients from plant amination of herbarium specimens kept in Mycological tissue via haustoria, which develops in epidermal cells Herbarium of the Institute of Botany (BAK), Azerbaijan of plants [Braun, Cook, 2012]. Among all powdery mil- National Academy of Sciences and collections of re- dews only four genera demonstrate endoparasitism, of cent years. To contribute detail taxonomic analysis data them Phyllactinia Lév., have partly endoparasitic na- given in literatures was revised. Modern taxonomic and ture. Fungi belonging to these genera penetrate into the nomenclature changes were considered. The host range plant cell via stomata and develop haustoria in paren- and geographical distribution of species residing to the chyma cells. Endoparasitic genera of powdery mildews genus within the country were clarified. -
Powdery Mildew on Tomato1 Gary Vallad, Pamela Roberts, Timur Momol, and Ken Pernezny2
PP-191 Powdery Mildew on Tomato1 Gary Vallad, Pamela Roberts, Timur Momol, and Ken Pernezny2 Powdery mildew occurs on greenhouse-grown tomatoes and occasionally on tomatoes grown in vegetable gardens or in commercial fields in Florida. The fungus Oidium neolycopersici causes the disease. Powdery mildew of tomato occurs in California, Nevada, Utah, North Carolina, Ohio, and Connecticut in the United States. It is also found throughout the world on greenhouse and field-grown tomatoes. Losses in fruit production due to decreased plant vigor can reach up to 50% in commercial production regions where powdery mildew is severe. Although this level of damage has not been observed on tomatoes in fields in Florida, plants grown in greenhouses in North Florida reached 50%–60% disease incidence. Symptoms of the disease occur only on the leaves. Symp- toms initially appear as light green to yellow blotches or spots that range from 1/8–½ inches in diameter on the upper surface of the leaf (Figures 1 and 2). The spots eventually turn brown as the leaf tissue dies. The entire leaf eventually turns brown and shrivels but remains Figure 1. Close-up of tomato leaflet exhibiting symptoms of powdery attached to the stem. A white, powdery growth of the mildew. Credits: G. E. Vallad, UF/IFAS fungal mycelium is found on the top of leaves (Figures 1 and 3). In western regions of the United States and other parts of the world, powdery mildew may also be caused by the The disease is caused by Oidium neolycopersici in Florida. fungus Leveillula taurica. These powdery mildew fungi are The perfect or sexual state, Erysiphae, is rarely seen in obligate parasites; they can only survive on a living host. -
New Powdery Mildew on Tomatoes
NEW POWDERY MILDEW ON TOMATOES Heather Scheck, Plant Pathologist Ag Commissioner’s Office, Santa Barbara County POWDERY MILDEW BIOLOGY Powdery mildew fungi are obligate, biotrophic parasites of the phylum Ascomycota of the Kingdom Fungi. The diseases they cause are common, widespread, and easily recognizable Individual species of powdery mildew fungi typically have a narrow host range, but the ones that infect Tomato are exceptionally large. Photo from APS Net POWDERY MILDEW BIOLOGY Unlike most fungal pathogens, powdery mildew fungi tend to grow superficially, or epiphytically, on plant surfaces. During the growing season, hyphae and spores are produced in large colonies that can coalesce Infections can also occur on stems, flowers, or fruit (but not tomato fruit) Our climate allows easy overwintering of inoculum and perfect summer temperatures for epidemics POWDERY MILDEW BIOLOGY Specialized absorption cells, termed haustoria, extend into the plant epidermal cells to obtain nutrition. Powdery mildew fungi can completely cover the exterior of the plant surfaces (leaves, stems, fruit) POWDERY MILDEW BIOLOGY Conidia (asexual spores) are also produced on plant surfaces during the growing season. The conidia develop either singly or in chains on specialized hyphae called conidiophores. Conidiophores arise from the epiphytic hyphae. This is the Anamorph. Courtesy J. Schlesselman POWDERY MILDEW BIOLOGY Some powdery mildew fungi produce sexual spores, known as ascospores, in a sac-like ascus, enclosed in a fruiting body called a chasmothecium (old name cleistothecium). This is the Teleomorph Chasmothecia are generally spherical with no natural opening; asci with ascospores are released when a crack develops in the wall of the fruiting body. -
Plant Science 2018: Resistance to Powdery Mildew (Blumeria Graminis F. Sp. Hordei) in Winter Barley, Poland- Jerzy H Czembor, Al
Extended Abstract Insights in Aquaculture and Biotechnology 2019 Vol.3 No.1 a Plant Science 2018: Resistance to powdery mildew (Blumeria graminis f. sp. hordei) in winter barley, Poland- Jerzy H Czembor, Aleksandra Pietrusinska and Kinga Smolinska-Plant Breeding and Acclimatization Institute – National Research Institute Jerzy H Czembor, Aleksandra Pietrusinska and Kinga Smolinska Plant Breeding and Acclimatization Institute – National Research Institute, Poland Powdery mildew (Blumeria graminis f. sp. hordei) is Barley powdery mildew is brought about by Blumeria the most ecomically important barley pathogen. This graminis f. sp. hordei (Bgh) is one of the most wind borne fungus causes foliar disease and yield damaging foliar maladies of grain. This growth is the loses rich up to 20-30%. Resistance for powdery main types of the family Blumeria however it has mildew is the aim of numerous breeding programmes. recently been treated as a types of Erysiphe. As per The transfer of the MLO gene for resistance to Braun (1987), it varies from all types of Erysiphe since powdery mildew into winter barley cultivars using its anamorph has special highlights, for instance, Marker-Assisted Selection (MAS) strategy is digitate haustoria, auxiliary mycelium with bristle-like presented. These cultivars are characterized by high hyphae and bulbous swellings of the conidiophores, and stable yield under polish conditions. Field testing and as a result of the structure of the ascocarps. Braun of the obtained lines with MLO resistance for their (1987) thinks about that, in view of these distinctions, agricultural value was conducted. Four cultivars there ought to be a detachment at conventional level. -
Basal Resistance of Barley to Adapted and Non-Adapted Forms of Blumeria Graminis
Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis Reza Aghnoum Thesis committee Thesis supervisors Prof. Dr. Richard G.F. Visser Professor of Plant Breeding Wageningen University Dr.ir. Rients E. Niks Assistant professor, Laboratory of Plant Breeding Wageningen University Other members Prof. Dr. R.F. Hoekstra, Wageningen University Prof. Dr. F. Govers, Wageningen University Prof. Dr. ir. C. Pieterse, Utrecht University Dr.ir. G.H.J. Kema, Plant Research International, Wageningen This research was conducted under the auspices of the Graduate school of Experimental Plant Sciences. II Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis Reza Aghnoum Thesis Submitted in partial fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 16 June 2009 at 4 PM in the Aula. III Reza Aghnoum Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis 132 pages. Thesis, Wageningen University, Wageningen, NL (2009) With references, with summaries in Dutch and English ISBN 978-90-8585-419-7 IV Contents Chapter 1 1 General introduction Chapter 2 15 Which candidate genes are responsible for natural variation in basal resistance of barley to barley powdery mildew? Chapter 3 47 Transgressive segregation for extreme low and high level of basal resistance to powdery mildew in barley -
Recently Introduced Diseases of Ornamental Plants Gardens Are Being Increasingly Exposed to New Diseases, Principally Due to Globalization of Plant Trade
horticultural science Recently introduced diseases of ornamental plants Gardens are being increasingly exposed to new diseases, principally due to globalization of plant trade. Béatrice Henricot surveys the most significant introductions he main reasons for One key question is whether new and infamous examples include increased risks of introducing we are recording more new diseases potato blight in the 19th century and Tpathogens into any country than in the past as a result of these Dutch elm disease in the late 1960s. are globalization of trade and travel, factors. A study carried out by Jones More recently, gardeners have had evolutionary change of plant patho & Baker (2007) indicated that the to deal with box blight and new gens, and climate change and in part numbers of new or important species of Phytophthora such as icular its effect on insects as disease pathogens estab lishing in the UK P. ramorum and P. kernoviae. vectors (Waage et al. 2007). Global during the period 1970–2004 are This article will look at diseases ization is probably the main driver of not increasing. A total of 234 new which have recently been found increased risk of intro ducing plant pathogens were recorded during that in gardens in the UK. Cases mainly pathogens in the future and this has period and were mainly associated come from the RHS advisory been well documented (Brasier 2005, with ornamental plants (as opposed records since 1998 with some Henricot & Gorton 2005, Ingram to horticultural crops, wild native additions taken from the online 2005, Brasier 2008). Pathogen evol species, agricult ural crops, pasture journal New Disease Reports (www. -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
Erysiphe Salmonii (Erysiphales, Ascomycota), Another East Asian Powdery Mildew Fungus Introduced to Ukraine Vasyl P
Гриби і грибоподібні організми Fungi and Fungi-like Organisms doi: 10.15407/ukrbotj74.03.212 Erysiphe salmonii (Erysiphales, Ascomycota), another East Asian powdery mildew fungus introduced to Ukraine Vasyl P. HELUTA1, Susumu TAKAMATSU2, Siska A.S. SIAHAAN2 1 M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska Str., Kyiv 01004, Ukraine [email protected] 2 Department of Bioresources, Graduate School, Mie University 1577 Kurima-Machiya, Tsu 514-8507, Japan [email protected] Heluta V.P., Takamatsu S., Siahaan S.A.S. Erysiphe salmonii (Erysiphales, Ascomycota), another East Asian powdery mildew fungus introduced to Ukraine. Ukr. Bot. J., 2017, 74(3): 212–219. Abstract. In 2015, a powdery mildew caused by a fungus belonging to Erysiphe sect. Uncinula was recorded on two species of ash, Fraxinus excelsior and F. pennsylvanica (Oleaceae), from Ukraine (Kyiv, two localities). Based on the comparative morphological analysis of Ukrainian specimens with samples of Erysiphe fraxinicola and E. salmonii collected in Japan and the Far East of Russia, the fungus was identified as E. salmonii. This identification was confirmed using molecular phylogenetic analysis. This is the first report of E. salmonii not only in Ukraine but also in Europe. It is suggested that the records of E. fraxinicola from Belarus and Russia could have been misidentified and should be corrected to E. salmonii. In 2016, the fungus was found not only in Kyiv but also outside the city. The development of the fungus had symptoms of a potential epiphytotic disease. Thus, it may become invasive in Ukraine and spread to Western Europe in the near future. -
Potential Organic Fungicides for the Control of Powdery Mildew on Chrysanthemum X Morifolium
Potential Organic Fungicides for the Control of Powdery Mildew on Chrysanthemum x morifolium A Thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science Michael Bradshaw University of Washington 2015 School of Environmental and Forest Science Thesis Committee Members Dr. Sarah Reichard (Committee Chair) Orin and Althea Soest Chair for Urban Horticulture Director, University of Washington Botanic Gardens Dr. Linda Chalker-Scott Associate Professor and Extension Urban Horticulturist Washington State University, PREC Dr. Marianne Elliott Research Associate, Plant Pathology Washington State University, PREC ©Copyright Michael Bradshaw Table of Contents ABSTRACT ............................................................................................................................... 1 INTRODUCTION ....................................................................................................................... 2 LITERATURE REVIEW ............................................................................................................. 4 Salts of Fatty Acids ............................................................................................................. 4 Organic Acids ..................................................................................................................... 6 Sesame Oil......................................................................................................................... 7 Inoculation Methods .......................................................................................................... -
Hyperparasites of Erysiphales Fungi in the Urban Environment
POLISH JOURNAL OF NATURAL SCIENCES Abbrev.: Pol. J. Natur. Sc., Vol 27(3): 289–299, Y. 2012 HYPERPARASITES OF ERYSIPHALES FUNGI IN THE URBAN ENVIRONMENT Ewa Sucharzewska, Maria Dynowska, Elżbieta Ejdys, Anna Biedunkiewicz, Dariusz Kubiak Department of Mycology University of Warmia and Mazury in Olsztyn Key words: Ampelomyces, hyperparasites, fungicolous fungi, powdery mildew, transport pollu- tion effects, anthropopressure. Abstract This manuscript presents data on the occurrence of hyperparasitic fungi colonizing the mycelium of selected species of Erysiphales: Erysiphe alphitoides, E. hypophylla, E. palczewskii, Golovinomyces sordidus, Podosphaera fusca and Sawadaea tulasnei in the urban environment. In the paper the effect of hyperparasites on the development of fungal hosts at diversified level of transport pollution is emphasized. Over a three-years experiment, the presence of hyperparasites was confirmed on all analyzed Erysiphales species, with prevailing species from the genus Ampelomyces. The representa- tives of other genera: Alternaria, Aureobasidium, Cladosporium, Stemphylium and Tripospermum were also observed on mycelium of E. alphitoides and E. palczewskii. The hyperparasites occurred only on stations situated at the main roads were found not to affect the extent of plant infection by fungi of the order Erysiphales, but reduced the number of chasmothecia. NADPASOŻYTY GRZYBÓW Z RZĘDU ERYSIPHALES W ŚRODOWISKU MIEJSKIM Ewa Sucharzewska, Maria Dynowska, Elżbieta Ejdys, Anna Biedunkiewicz, Dariusz Kubiak Katedra Mykologii Uniwersytet Warmińsko-Mazurski w Olsztynie Słowa kluczowe: Ampelomyces, nadpasożyty, mączniaki prawdziwe, zanieczyszczenia komunikacyjne, antropopresja. Address: Ewa Sucharzewska, University of Warmia and Mazury, ul. Michała Oczapowskiego 1A, 10-719 Olsztyn, Poland, phone: +48 (89) 523 42 98, e-mail: [email protected] 290 Ewa Sucharzewska et al. -
Fuzzy Pride-Of-Rochester Deutzia Scabra Thunb
Weed of the Week Fuzzy Pride-of-Rochester Deutzia scabra Thunb. Common Names: deutzia, fuzzy deutzia, pride-of- Rochester, fuzzy pride-of-Rochester Native Origin: Eastern Asia - China, Japan, Korea; introduced in 1880. Description: A large deciduous shrub in the hydrangea family (Hydrangeaceae) growing to a height 6 to 10 feet and width of 4 to 8 feet with an open, arching crown. The bark is reddish brown to orange-brown and exfoliates in large sheets. Slender stems are fuzzy/scabrous, red-brown to green, with hollow piths and pointed buds. Leaves are opposite, simple, serrate, and slightly pubescent on both surfaces, giving them a rough, fuzzy/scabrous feel. Light green leaves are 4 inches long and 2 inches wide with a rounded leaf base. Flowers are white tinged with a rosy- purple color on the outside of the corolla, fragrant, and borne on a panicle to 6 inches. Flowers are produced on the previous season’s wood and appear in late spring to early summer (April – July). The fruit is a 1/4 inch dry brown capsule that ripens in early fall and persists through the winter. It reproduces through seeds. Habitat: It grows in full sun, semi-shade, or moderately heavy shade. It tolerates most soils but prefers moist well- drained fertile soils. This ornamental plant can be found in landscaped gardens, open woodlands and shady forest edges. In Kentucky state parks fuzzy pride-of- Rochester invades woodlands areas of sugar maple, buckeye, and magnolia trees. Distribution: This species is reported from states shaded on Plants Database map. -
<I>Erysiphe Syringae-Japonicae</I>
ISSN (print) 0093-4666 © 2015. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/130.259 Volume 130, pp. 259–264 January–March 2015 First record of Erysiphe syringae-japonicae in Turkey Ilgaz Akata* & Vasyl P. Heluta 1Ankara University, Science Faculty, Department of Biology, TR 06100, Ankara, Turkey 2M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., Kiev, 01601, Ukraine *Corresponding author: [email protected] Abstract — Erysiphe syringae-japonicae was reported on leaves of Syringa vulgaris for the first time from Turkey. A short description, distribution, and illustrations for this powdery mildew fungus are provided and discussed briefly. Key words — Asia Minor, Erysiphales, invasive species, lilac, Microsphaera Introduction A powdery mildew collected in Japan on the lilac, Syringa amurensis var. japonica [= S. reticulata], was described by Braun (1982) as Microsphaera syringae-japonicae (Erysiphales, Ascomycota). Later, this species was reported from the Russian Far East (Bunkina 1991, as “Microsphaera syringae”) and from Korea (Shin 2000). Microsphaera syringae-japonicae was already known on lilacs in North America and Europe, and was distinguished from M. syringae, mainly by its evanescent mycelium, its larger number of spores in the ascus, and its usually more extensively pigmented chasmothecial appendage bases. In 1988, one of the authors (VP Heluta) critically examined the type specimens of powdery mildews described from the Russian Far East, and showed that one of them, the type specimen of M. aceris on leaves of Acer barbinerve, had chasmothecia identical to those of M. syringae-japonicae. However they were in adherent groups that could have drifted from another host such as aSyringa sp.