Cauchy's Infinitesimals, His Sum Theorem, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fermat, Leibniz, Euler, and the Gang: the True History of the Concepts Of
FERMAT, LEIBNIZ, EULER, AND THE GANG: THE TRUE HISTORY OF THE CONCEPTS OF LIMIT AND SHADOW TIZIANA BASCELLI, EMANUELE BOTTAZZI, FREDERIK HERZBERG, VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, TAHL NOWIK, DAVID SHERRY, AND STEVEN SHNIDER Abstract. Fermat, Leibniz, Euler, and Cauchy all used one or another form of approximate equality, or the idea of discarding “negligible” terms, so as to obtain a correct analytic answer. Their inferential moves find suitable proxies in the context of modern the- ories of infinitesimals, and specifically the concept of shadow. We give an application to decreasing rearrangements of real functions. Contents 1. Introduction 2 2. Methodological remarks 4 2.1. A-track and B-track 5 2.2. Formal epistemology: Easwaran on hyperreals 6 2.3. Zermelo–Fraenkel axioms and the Feferman–Levy model 8 2.4. Skolem integers and Robinson integers 9 2.5. Williamson, complexity, and other arguments 10 2.6. Infinity and infinitesimal: let both pretty severely alone 13 3. Fermat’s adequality 13 3.1. Summary of Fermat’s algorithm 14 arXiv:1407.0233v1 [math.HO] 1 Jul 2014 3.2. Tangent line and convexity of parabola 15 3.3. Fermat, Galileo, and Wallis 17 4. Leibniz’s Transcendental law of homogeneity 18 4.1. When are quantities equal? 19 4.2. Product rule 20 5. Euler’s Principle of Cancellation 20 6. What did Cauchy mean by “limit”? 22 6.1. Cauchy on Leibniz 23 6.2. Cauchy on continuity 23 7. Modern formalisations: a case study 25 8. A combinatorial approach to decreasing rearrangements 26 9. -
Connes on the Role of Hyperreals in Mathematics
Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
TME Volume 5, Numbers 2 and 3
The Mathematics Enthusiast Volume 5 Number 2 Numbers 2 & 3 Article 27 7-2008 TME Volume 5, Numbers 2 and 3 Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation (2008) "TME Volume 5, Numbers 2 and 3," The Mathematics Enthusiast: Vol. 5 : No. 2 , Article 27. Available at: https://scholarworks.umt.edu/tme/vol5/iss2/27 This Full Volume is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. The Montana Mathematics Enthusiast ISSN 1551-3440 VOL. 5, NOS.2&3, JULY 2008, pp.167-462 Editor-in-Chief Bharath Sriraman, The University of Montana Associate Editors: Lyn D. English, Queensland University of Technology, Australia Claus Michelsen, University of Southern Denmark, Denmark Brian Greer, Portland State University, USA Luis Moreno-Armella, University of Massachusetts-Dartmouth International Editorial Advisory Board Miriam Amit, Ben-Gurion University of the Negev, Israel. Ziya Argun, Gazi University, Turkey. Ahmet Arikan, Gazi University, Turkey. Astrid Beckmann, University of Education, Schwäbisch Gmünd, Germany. John Berry, University of Plymouth,UK. Morten Blomhøj, Roskilde University, Denmark. Robert Carson, Montana State University- Bozeman, USA. Mohan Chinnappan, University of Wollongong, Australia. Constantinos Christou, University of Cyprus, Cyprus. Bettina Dahl Søndergaard, University of Aarhus, Denmark. Helen Doerr, Syracuse University, USA. Ted Eisenberg, Ben-Gurion University of the Negev, Israel. -
Math Book from Wikipedia
Math book From Wikipedia PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 25 Jul 2011 10:39:12 UTC Contents Articles 0.999... 1 1 (number) 20 Portal:Mathematics 24 Signed zero 29 Integer 32 Real number 36 References Article Sources and Contributors 44 Image Sources, Licenses and Contributors 46 Article Licenses License 48 0.999... 1 0.999... In mathematics, the repeating decimal 0.999... (which may also be written as 0.9, , 0.(9), or as 0. followed by any number of 9s in the repeating decimal) denotes a real number that can be shown to be the number one. In other words, the symbols 0.999... and 1 represent the same number. Proofs of this equality have been formulated with varying degrees of mathematical rigour, taking into account preferred development of the real numbers, background assumptions, historical context, and target audience. That certain real numbers can be represented by more than one digit string is not limited to the decimal system. The same phenomenon occurs in all integer bases, and mathematicians have also quantified the ways of writing 1 in non-integer bases. Nor is this phenomenon unique to 1: every nonzero, terminating decimal has a twin with trailing 9s, such as 8.32 and 8.31999... The terminating decimal is simpler and is almost always the preferred representation, contributing to a misconception that it is the only representation. The non-terminating form is more convenient for understanding the decimal expansions of certain fractions and, in base three, for the structure of the ternary Cantor set, a simple fractal. -
Math 3010 § 1. Treibergs Final Exam Name: Practice Problems March 30
Math 3010 x 1. Final Exam Name: Practice Problems Treibergs March 30, 2018 Here are some problems soluble by methods encountered in the course. I have tried to select problems ranging over the topics we've encountered. Admittedly, they were chosen because they're fascinating to me. As such, they may have solutions that are longer than the questions you might expect on an exam. But some of them are samples of homework problems. Here are a few of my references. References. • Carl Boyer, A History of the Calculus and its Conceptual Development, Dover Publ. Inc., New York, 1959; orig. publ. The Concepts of the Calculus, A Critical and Historical Discussion of the Derivative and the Integral, Hafner Publ. Co. Inc., 1949. • Carl Boyer, A History of Mathematics, Princeton University Press, Princeton 1985 • Lucas Bunt, Phillip Jones, Jack Bedient, The Historical Roots of Elementary mathematics, Dover, Mineola 1988; orig. publ. Prentice- Hall, Englewood Cliffs 1976 • David Burton, The History of Mathmatics, An Introduction, 7th ed., McGraw Hill, New York 2011 • Ronald Calinger, Classics of Mathematics, Prentice-Hall, Englewood Cliffs 1995; orig. publ. Moore Publ. Co. Inc., 1982 • Victor Katz, A History of Mathematics An introduction, 3rd. ed., Addison-Wesley, Boston 2009 • Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York 1972 • John Stillwell, Mathematics and its History, 3rd ed., Springer, New York, 2010. • Dirk Struik, A Concise History of Mathematics, Dover, New York 1967 • Harry N. Wright, First Course in Theory of Numbers, Dover, New York, 1971; orig. publ. John Wiley & Sons, Inc., New York, 1939. -
Mathematical Conquerors, Unguru Polarity, and the Task of History
Journal of Humanistic Mathematics Volume 10 | Issue 1 January 2020 Mathematical Conquerors, Unguru Polarity, and the Task of History Mikhail Katz Bar-Ilan University Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Mathematics Commons Recommended Citation Katz, M. "Mathematical Conquerors, Unguru Polarity, and the Task of History," Journal of Humanistic Mathematics, Volume 10 Issue 1 (January 2020), pages 475-515. DOI: 10.5642/jhummath.202001.27 . Available at: https://scholarship.claremont.edu/jhm/vol10/iss1/27 ©2020 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Mathematical Conquerors, Unguru Polarity, and the Task of History Mikhail G. Katz Department of Mathematics, Bar Ilan University [email protected] Synopsis I compare several approaches to the history of mathematics recently proposed by Blåsjö, Fraser–Schroter, Fried, and others. I argue that tools from both mathe- matics and history are essential for a meaningful history of the discipline. In an extension of the Unguru–Weil controversy over the concept of geometric algebra, Michael Fried presents a case against both André Weil the “privileged ob- server” and Pierre de Fermat the “mathematical conqueror.” Here I analyze Fried’s version of Unguru’s alleged polarity between a historian’s and a mathematician’s history. -
What Makes a Theory of Infinitesimals Useful? a View by Klein and Fraenkel
WHAT MAKES A THEORY OF INFINITESIMALS USEFUL? A VIEW BY KLEIN AND FRAENKEL VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, AND THOMAS MORMANN Abstract. Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be successful, in terms of the feasibility of implementation of the Mean Value Theorem. We explore the evolution of the idea over the past century, and the role of Abraham Robinson’s framework therein. 1. Introduction Historians often take for granted a historical continuity between the calculus and analysis as practiced by the 17–19th century authors, on the one hand, and the arithmetic foundation for classical analysis as developed starting with the work of Cantor, Dedekind, and Weierstrass around 1870, on the other. We extend this continuity view by exploiting the Mean Value Theo- rem (MVT) as a case study to argue that Abraham Robinson’s frame- work for analysis with infinitesimals constituted a continuous extension of the procedures of the historical infinitesimal calculus. Moreover, Robinson’s framework provided specific answers to traditional preoc- cupations, as expressed by Klein and Fraenkel, as to the applicability of rigorous infinitesimals in calculus and analysis. This paper is meant as a modest contribution to the prehistory of Robinson’s framework for infinitesimal analysis. To comment briefly arXiv:1802.01972v1 [math.HO] 1 Feb 2018 on a broader picture, in a separate article by Bair et al. [1] we ad- dress the concerns of those scholars who feel that insofar as Robinson’s framework relies on the resources of a logical framework that bears little resemblance to the frameworks that gave rise to the early theo- ries of infinitesimals, Robinson’s framework has little bearing on the latter. -
Small Oscillations of the Pendulum, Euler's Method, and Adequality
SMALL OSCILLATIONS OF THE PENDULUM, EULER’S METHOD, AND ADEQUALITY VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, AND TAHL NOWIK Abstract. Small oscillations evolved a great deal from Klein to Robinson. We propose a concept of solution of differential equa- tion based on Euler’s method with infinitesimal mesh, with well- posedness based on a relation of adequality following Fermat and Leibniz. The result is that the period of infinitesimal oscillations is independent of their amplitude. Keywords: harmonic motion; infinitesimal; pendulum; small os- cillations Contents 1. Small oscillations of a pendulum 1 2. Vector fields, walks, and integral curves 3 3. Adequality 4 4. Infinitesimal oscillations 5 5. Adjusting linear prevector field 6 6. Conclusion 7 Acknowledgments 7 References 7 arXiv:1604.06663v1 [math.HO] 13 Apr 2016 1. Small oscillations of a pendulum The breakdown of infinite divisibility at quantum scales makes irrel- evant the mathematical definitions of derivatives and integrals in terms ∆y of limits as x tends to zero. Rather, quotients like ∆x need to be taken in a certain range, or level. The work [Nowik & Katz 2015] developed a general framework for differential geometry at level λ, where λ is an infinitesimal but the formalism is a better match for a situation where infinite divisibility fails and a scale for calculations needs to be fixed ac- cordingly. In this paper we implement such an approach to give a first rigorous account “at level λ” for small oscillations of the pendulum. 1 2 VLADIMIR KANOVEI, K. KATZ, MIKHAIL KATZ, AND TAHL NOWIK In his 1908 book Elementary Mathematics from an Advanced Stand- point, Felix Klein advocated the introduction of calculus into the high- school curriculum. -
Fermat's Dilemma: Why Did He Keep Mum on Infinitesimals? and The
FERMAT’S DILEMMA: WHY DID HE KEEP MUM ON INFINITESIMALS? AND THE EUROPEAN THEOLOGICAL CONTEXT JACQUES BAIR, MIKHAIL G. KATZ, AND DAVID SHERRY Abstract. The first half of the 17th century was a time of in- tellectual ferment when wars of natural philosophy were echoes of religious wars, as we illustrate by a case study of an apparently innocuous mathematical technique called adequality pioneered by the honorable judge Pierre de Fermat, its relation to indivisibles, as well as to other hocus-pocus. Andr´eWeil noted that simple appli- cations of adequality involving polynomials can be treated purely algebraically but more general problems like the cycloid curve can- not be so treated and involve additional tools–leading the mathe- matician Fermat potentially into troubled waters. Breger attacks Tannery for tampering with Fermat’s manuscript but it is Breger who tampers with Fermat’s procedure by moving all terms to the left-hand side so as to accord better with Breger’s own interpreta- tion emphasizing the double root idea. We provide modern proxies for Fermat’s procedures in terms of relations of infinite proximity as well as the standard part function. Keywords: adequality; atomism; cycloid; hylomorphism; indi- visibles; infinitesimal; jesuat; jesuit; Edict of Nantes; Council of Trent 13.2 Contents arXiv:1801.00427v1 [math.HO] 1 Jan 2018 1. Introduction 3 1.1. A re-evaluation 4 1.2. Procedures versus ontology 5 1.3. Adequality and the cycloid curve 5 1.4. Weil’s thesis 6 1.5. Reception by Huygens 8 1.6. Our thesis 9 1.7. Modern proxies 10 1.8. -
Visiting Mathematicians Jon Barwise, in Setting the Tone for His New Column, Has Incorporated Three Articles Into This Month's Offering
OTICES OF THE AMERICAN MATHEMATICAL SOCIETY The Growth of the American Mathematical Society page 781 Everett Pitcher ~~ Centennial Celebration (August 8-12) page 831 JULY/AUGUST 1988, VOLUME 35, NUMBER 6 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings which have been approved prior to Mathematical Society in the issue corresponding to that of the Notices the date this issue of Notices was sent to the press. The summer which contains the program of the meeting. Abstracts should be sub and annual meetings are joint meetings of the Mathematical Associ mitted on special forms which are available in many departments of ation of America and the American Mathematical Society. The meet mathematics and from the headquarters office of the Society. Ab ing dates which fall rather far in the future are subject to change; this stracts of papers to be presented at the meeting must be received is particularly true of meetings to which no numbers have been as at the headquarters of the Society in Providence, Rhode Island, on signed. Programs of the meetings will appear in the issues indicated or before the deadline given below for the meeting. Note that the below. First and supplementary announcements of the meetings will deadline for abstracts for consideration for presentation at special have appeared in earlier issues. sessions is usually three weeks earlier than that specified below. For Abstracts of papers presented at a meeting of the Society are pub additional information, consult the meeting announcements and the lished in the journal Abstracts of papers presented to the American list of organizers of special sessions. -
A BRIEF TOUR of FERMAT's CALCULUS 1. Introduction If Isaac
A BRIEF TOUR OF FERMAT'S CALCULUS JOHN D. LORCH Abstract. We examine some of the beautiful and surprisingly substantial contributions which Pierre de Fermat made to the development of calculus. In the process, we emphasize the importance of the limit concept and we introduce alternative viewpoints of both di®erentiation and integration. 1. Introduction If Isaac Newton \stood on the shoulders of giants" then, when it came to the development of calculus, he certainly stood on the shoulders of French mathemati- cian Pierre de Fermat (1601-1665). Fermat, a key ¯gure in an era of unprecedented mathematical development, is popularly known for his contributions to number the- ory and probability. However, he also made beautiful and substantial contributions to the beginnings of calculus. Our purpose is to present some of Fermat's work in calculus (cloaked in modern terms) featuring his method of adequality. Fermat's viewpoint is rich in important ideas, including: ² An alternate approach to di®erentiation and integration which is both clever and beautiful. ² The importance of a formal limit concept and the Fundamental Theorem of Calculus. ² Yet another illustration of the power of geometric series. ² A foray into the history of mathematics, featuring one of the greatest math- ematicians of all time. 2. Ad-equality and Fermat's tangent line problem Fermat's work on the tangent line problem likely began sometime in the 1620's as an extension of Viete's work on the theory of equations. Responding to inquiries, in 1636 he prepared a short document outlining his method (see [1]). In the document he describes the following situation: Consider a parabola with corresponding axis of symmetry (see Figure 1).