Road Traffic Air Quality Management

Total Page:16

File Type:pdf, Size:1020Kb

Road Traffic Air Quality Management Appendices Road Traffic Air Quality Management June 2014 Copyright http://creativecommons.org/licenses/by/3.0/au/ © State of Queensland (Department of Transport and Main Roads) 2014 Feedback: Please send your feedback regarding this document to: [email protected] Road Traffic Air Quality Management, Transport and Main Roads, June 2014 Amendment Register Issue / Reference Description of revision Authorised by Date Rev no. section 1 June 2014 Road Traffic Air Quality Management, Transport and Main Roads, June 2014 i Contents Appendix A – Modelling Example ......................................................................................................... 5 1 Example 1 – Road emissions ....................................................................................................... 5 1.1 Emissions ........................................................................................................................................ 5 1.2 CALINE4 line source dispersion model .......................................................................................... 6 2 Example 2 - Construction emissions .........................................................................................10 2.1 Input parameters ........................................................................................................................... 11 2.2 Pollutants modelled ...................................................................................................................... 12 2.3 Emission factors used ................................................................................................................... 12 2.4 Source estimates .......................................................................................................................... 13 2.5 Dispersion modelling .................................................................................................................... 14 Appendix B – Tunnels ..........................................................................................................................17 1 Tunnels .........................................................................................................................................17 2 Internal air quality guidelines .....................................................................................................17 3 Parameters relevant to emission rates ......................................................................................17 3.1 Gradient ........................................................................................................................................ 17 3.2 Speed ............................................................................................................................................ 17 3.3 Emissions estimation .................................................................................................................... 17 3.4 Dispersion modelling .................................................................................................................... 18 Appendix C – Climate Change Impact Assessment .........................................................................20 1 Assessment – GHG emissions and mitigation measures .......................................................20 2 Assessment – Climate change risks and adaptation measures .............................................20 3 Calculation methods ...................................................................................................................20 Appendix D – Assessment of Potential Air Quality Impacts of Busway Projects .........................21 1 Objectives .....................................................................................................................................21 1.1 Document overview ...................................................................................................................... 21 2 Assessment philosophy .............................................................................................................22 3 Air pollutants of concern ............................................................................................................23 3.1 General ......................................................................................................................................... 23 3.2 Pollutants of interest to the Department of Transport and Main Roads ....................................... 24 4 Transport emission factors ........................................................................................................25 4.1 South-east Queensland bus fleet ................................................................................................. 25 4.1.1 Background ..................................................................................................................25 4.1.2 Options .........................................................................................................................26 4.2 Urban vehicle fleet ........................................................................................................................ 29 4.2.1 Background ..................................................................................................................29 4.2.2 Options .........................................................................................................................30 5 Air Quality Design standards .....................................................................................................31 5.1 Ambient Air Quality ....................................................................................................................... 31 Road Traffic Air Quality Management, Transport and Main Roads, June 2014 ii 5.2 In-tunnel air quality ....................................................................................................................... 32 6 Existing air quality .......................................................................................................................33 6.1 Ambient air monitoring .................................................................................................................. 33 6.1.1 When is monitoring necessary? ...................................................................................33 6.1.2 How much monitoring is required? ...............................................................................34 6.1.3 What methods should be used for monitoring? ............................................................34 6.2 Characterisation of background levels ......................................................................................... 35 7 Project information requirements ..............................................................................................36 7.1 Alignment information ................................................................................................................... 36 7.1.1 Busway and road alignments .......................................................................................36 7.1.2 Gradients ......................................................................................................................38 7.1.3 Intersections .................................................................................................................38 7.1.4 Signalling information ...................................................................................................38 7.1.5 Acceleration of buses away from intersections and/or traffic lights .............................38 7.2 Tunnels ......................................................................................................................................... 39 7.2.1 Alignment and gradients ...............................................................................................39 7.2.2 Tunnel length and ventilation options ...........................................................................39 7.3 Traffic information ......................................................................................................................... 39 7.3.1 Bus volumes .................................................................................................................39 7.3.2 General vehicle traffic volumes ....................................................................................40 7.3.3 Traffic speeds ...............................................................................................................40 7.4 Fleet information ........................................................................................................................... 41 7.4.1 Fleet composition .........................................................................................................41 7.4.2 Fleet emissions inventory .............................................................................................42 8 Assessment tools and their application ....................................................................................47 8.1 Dispersion models ........................................................................................................................ 47 8.1.1 CALINE4 .......................................................................................................................47 8.1.2 CAL3QHCR ..................................................................................................................48
Recommended publications
  • AMOC Variability, a Key Factor in Emission Reduction Scenarios
    UTRECHT UNIVERSITY MSC CLIMATE PHYSICS INSTITUTE FOR MARINE AND ATMOSPHERIC RESEARCH UTRECHT 5 AMOC variability, a key factor in emission reduction scenarios 10 Author: J.M. Valentí Muelas [6515886] Supervisor: Prof. Dr. Ir. H.A. Dijkstra 15 June 2020. Contents 1 Introduction 2 2 Methods 4 2.1 Carbon Cycle Model................................................4 5 2.2 Emission reduction pathways............................................5 2.3 Model........................................................7 2.4 Climate sensitivity & Feedbacks..........................................8 2.5 Model diagnostics.................................................. 10 3 Results 12 10 3.1 Basic variables................................................... 12 3.2 AMOC....................................................... 14 3.3 GMST-AMOC correlation............................................. 19 4 Discussion and Conclusions 21 4.1 GMST response to emission reduction....................................... 21 15 4.2 AMOC Collapse.................................................. 22 4.3 Conclusions..................................................... 24 Appendix A: Tables 28 Appendix B: Complementary figures 29 1 Abstract The climate system response to emission reduction shows time dependencies when evaluated in terms of global mean sur- face temperature (GMST). The Atlantic meridional overturning circulation (AMOC) variability may be forcing a non-linear behaviour on GMST response to emission reduction. In this study, emission reduction is evaluated with
    [Show full text]
  • Referee 1 1 2 Many Thanks for the Constructive Suggestions. Our
    1 Referee 1 2 3 Many thanks for the constructive suggestions. Our responses are in red text 4 below. 5 6 The paper describes PLASIM-GENIE a new intermediate-complexity 7 Atmosphere- Ocean Earth System Model, designed for simulations of millenium+ 8 length. The new model is well suited for studies of long-term climate change, its 9 simulation of present-day climate is acceptable, its formulation is mostly 10 described well, and I recommend publication subject to the following changes 11 being made. 12 13 1. It’s not 100% clear whether or not this model has a carbon cycle, and what 14 aspects of this are turned on or off. The model is described as an AOGCM 15 (suggesting no C-cycle), but section 2.1 and others do allude to the simulation of 16 different carbon pools on land, which is slightly confusing. I presume there is 17 some sort of diagnostic C-cycle which does not affect atmospheric CO2, but does 18 affect vegetation. However GENIE- 1 does contain a fully interactive C-cycle. The 19 abstract, introduction, section 2.1 and other sections have to be clearer about 20 which parts of the C-cycle are on or off. Any flexibility in the C-cycle (ie: being 21 run in a diagnostic mode to simulation terrestrial pools but without affecting the 22 ocean and atmosphere) should be noted, as potential users of this AOGCM would 23 be interested in this. 24 25 As suggested, we have added flexibility to the run the terrestrial carbon cycle in 26 diagnostic mode.
    [Show full text]
  • Part II: Practical Uses of Air Modeling in Litigation And
    Air Modeling as a Tool in Environmental Law and Policy: A Guide for Communities and Environmental Groups Part II: Practical Uses of Air Modeling in Litigation and Regulatory Contexts Clean Air Council 135 South 19th Street Suite 300 Philadelphia, PA 19103 (215) 567-4004 www.cleanair.org September 16, 2016 Authors and Purpose The authors are attorneys at the Clean Air Council at its headquarters in Philadelphia, Pennsylvania. The attorneys working on this White Paper were: Augusta Wilson, Esq., Aaron Jacobs-Smith, Esq., Benjamin Hartung, Esq., Christopher D. Ahlers, Esq., and Joseph Otis Minott, Esq., Executive Director and Chief Counsel. Clean Air Council is a non-profit, 501(c)(3) corporation with headquarters in Philadelphia, Pennsylvania. Acknowledgments The Clean Air Council thanks the Colcom Foundation. This paper would not have been possible without its generous funding and support. The authors would also like to thank Jini Chatterjee, Tessa Roberts and Paul Townsend, students at the University of Pennsylvania Law School’s Environmental Law Project, who conducted invaluable research for this paper, and Sonya Shea, who supervised their work at the Environmental Law Project. Disclaimer This paper is intended as a general introduction to the law and policy of air modeling under the Clean Air Act. Nothing in this paper is intended, nor shall it be construed as creating an attorney-client relationship or providing legal advice. © 2016 Clean Air Council 135 S. 19th Street Suite 300 Philadelphia, Pennsylvania 19103 Table of Contents Introduction .................................................................................................................................1 1. Use of Air Modeling to Support Tort Claims .....................................................................2 a. Challenges to the Use of Particular Modeling Software or to Underlying Assumptions .............................................................................................................2 b.
    [Show full text]
  • Air Dispersion Modeling Guidelines
    Air Quality Modeling Guidelines for Arizona Air Quality Permits PREPARED BY: FACILITIES EMISSIONS CONTROL SECTION AIR QUALITY DIVISION ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY November 1, 2019 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................... 1 1.1 Overview of Regulatory Modeling ........................................................................... 1 1.2 Purpose of an Air Quality Modeling Analysis .......................................................... 2 1.3 Authority for Modeling ............................................................................................. 3 1.4 Acceptable Models.................................................................................................... 3 1.5 Overview of Modeling Protocols and Checklists ..................................................... 4 1.6 Overview of Modeling Reports ................................................................................ 5 2 LEVELS OF MODELING ANALYSIS SOPHISTICATION .................................. 5 2.1 Screening Models or Screening Techniques ............................................................. 6 2.1.1 Screening Models for Near-Field Assessments ................................................. 6 2.1.2 Screening Techniques for Long-Range Transport Assessments ....................... 7 2.2 Refined Modeling ..................................................................................................... 8 2.2.1 AERMOD .........................................................................................................
    [Show full text]
  • 10.5 Development of a Wrf-Aermod Tool for Use in Regulatory Applications
    10.5 DEVELOPMENT OF A WRF-AERMOD TOOL FOR USE IN REGULATORY APPLICATIONS Toree Myers-Cook*, Jon Mallard, and Qi Mao Tennessee Valley Authority (TVA) ABSTRACT available. For rural sources, the closest representative NWS station may be greater than 50- The Tennessee Valley Authority (TVA) has developed 100 kilometers away. Furthermore, NWS data a WRF-AERMOD tool which transforms the Weather limitations - instrumentation limits, missing data, and Research and Forecasting (WRF) model output into lack of surface parameters required by AERMET - the meteorological input needed by AERMOD have motivated the EPA to explore the use of (AERMAP/AERMET/AERMOD), the EPA- prognostic meteorological models, specifically MM5 recommended model for short-range dispersion (Brode 2008), which can provide a timely and spatially modeling. The tool was used to model 2002 comprehensive meteorological dataset for input to emissions from TVA’s Allen Fossil (ALF) Plant in AERMOD. The EPA has been testing an in-house Memphis, Tennessee. Modeling using NWS data MM5-AERMOD tool for possible use in future was also performed and results were compared. regulatory applications. However, since MM5 is no Analyses of modeling results showed several longer supported by its developers and the WRF differences between the two approaches, with much (Weather Research Forecasting) model is now of the inconsistencies attributed to four main findings. considered the state-of-the-art meteorological model First, the NWS-AERMOD approach tended to stay to replace it, TVA developed a WRF-AERMOD tool more unstable in the summer and stable in the winter that takes WRF three-dimensional meteorological with unrealistically high mechanical boundary layer output (surface and upper air) and transforms it into (MBL) heights.
    [Show full text]
  • Atmospheric Deposition of Pcbs in the Spokane River Watershed
    Atmospheric Deposition of PCBs in the Spokane River Watershed March 2019 Publication No. 19-03-003 Publication Information This report is available on the Department of Ecology’s website at https://fortress.wa.gov/ecy/publications/SummaryPages/1903003.html. Data for this project are available at Ecology’s Environmental Information Management (EIM) website: www.ecology.wa.gov/eim/index.htm, search Study ID BERA0013. The Activity Tracker Code for this study is 16-032. Water Resource Inventory Area (WRIA) and 8-digit Hydrologic Unit Code (HUC) numbers for the study area: WRIAs HUC numbers 56 – Hangman 17010305 57 – Middle Spokane 17010306 Contact Information Publications Coordinator Environmental Assessment Program P.O. Box 47600, Olympia, WA 98504-7600 Phone: (360) 407–6764 Washington State Department of Ecology – www.ecology.wa.gov. Headquarters, Olympia (360) 407-6000 Northwest Regional Office, Bellevue (425) 649-7000 Southwest Regional Office, Olympia (360) 407-6300 Central Regional Office, Union Gap (509) 575-2490 Eastern Regional Office, Spokane (509) 329-3400 Cover photo: Atmospheric deposition samplers on the roof of the Spokane Clean Air Agency Building. Photo by Brandee Era-Miller. Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology. Accommodation Requests: To request ADA accommodation, including materials in a format for the visually impaired, call Ecology at 360-407-6764, or visit https://ecology.wa.gov/ accessibility. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.
    [Show full text]
  • Machine Learning Approaches for Outdoor Air Quality Modelling: a Systematic Review
    applied sciences Review Machine Learning Approaches for Outdoor Air Quality Modelling: A Systematic Review Yves Rybarczyk 1,2 and Rasa Zalakeviciute 1,* 1 Intelligent & Interactive Systems Lab (SI2 Lab), Universidad de Las Américas, 170125 Quito, Ecuador; [email protected] 2 Department of Electrical Engineering, CTS/UNINOVA, Nova University of Lisbon, 2829-516 Monte de Caparica, Portugal * Correspondence: [email protected]; Tel.: +351-593-23-981-000 Received: 15 November 2018; Accepted: 8 December 2018; Published: 11 December 2018 Abstract: Current studies show that traditional deterministic models tend to struggle to capture the non-linear relationship between the concentration of air pollutants and their sources of emission and dispersion. To tackle such a limitation, the most promising approach is to use statistical models based on machine learning techniques. Nevertheless, it is puzzling why a certain algorithm is chosen over another for a given task. This systematic review intends to clarify this question by providing the reader with a comprehensive description of the principles underlying these algorithms and how they are applied to enhance prediction accuracy. A rigorous search that conforms to the PRISMA guideline is performed and results in the selection of the 46 most relevant journal papers in the area. Through a factorial analysis method these studies are synthetized and linked to each other. The main findings of this literature review show that: (i) machine learning is mainly applied in Eurasian and North American continents and (ii) estimation problems tend to implement Ensemble Learning and Regressions, whereas forecasting make use of Neural Networks and Support Vector Machines.
    [Show full text]
  • Feasibility Study: Modelling Environmental Concentrations of Chemicals from Emission Data
    EEA Technical report No 8/2007 Feasibility study: modelling environmental concentrations of chemicals from emission data ISSN 1725-2237 EEA Technical report No 8/2007 Feasibility study: modelling environmental concentrations of chemicals from emission data Cover design: EEA Layout: Diadeis and EEA Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Communities. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. All rights reserved No part of this publication may be reproduced in any form or by any means electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without the permission in writing from the copyright holder. For translation or reproduction rights please contact EEA (address information below). Information about the European Union is available on the Internet. It can be accessed through the Europa server (www.europa.eu). Luxembourg: Office for Official Publications of the European Communities, 2007 ISBN 978-92-9167-925-6 ISSN 1725-2237 © EEA, Copenhagen, 2007 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Fax: +45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Acknowledgements ...................................................................................................
    [Show full text]
  • Dispersion V3.23
    Volume 2 Airviro User’s Reference Working with the Dispersion Module How to simulate the dispersion of pollutants Working with the Dispersion Module How to simulate the dispersion of pollutants Amendments Version Date changed Cause of change Signature 3.11 Ago2007 Upgrade GS 3.12 January2009 Upgrade GS 3.13 January2009 Upgrade GS 3.20 May 2010 Upgrade GS 3.21 Dec 2010 Upgrade GS 3.21 June 2012 Review GS 3.22 April 2013 Release GS 3.23 Jan 2014 Upgrade GS 3.23 January 2014 Review GS 3.23 June 2015 Review GS Contents 2.1 Introduction..............................................................................................................7 2.1.1 Why You Need to Use Dispersion Models.........................................................7 2.1.1.1 What’s the Use of Dispersion Simulations.....................................................7 2.1.1.2 How Can Airviro Help?......................................................................................7 2.1.2 Model Assumptions..............................................................................................8 2.1.3 Brief description of the available models..........................................................9 2.1.4 How does Dispersion Module client work?.....................................................18 2.1.5 Guidance for the beginner:................................................................................18 2.1.6 Overview of the Dispersion Module Main Window.........................................19 2.1.6.1 Changing Weather Conditions – Model settings.........................................19
    [Show full text]
  • Evaluation of ISC3, AERMOD, and ADMS Dispersion Models with Observations from Five Field Sites
    EVALUATION OF THE ADMS, AERMOD, AND ISC3 DISPERSION MODELS WITH THE OPTEX, DUKE FOREST, KINCAID, INDIANAPOLIS, AND LOVETT FIELD DATA SETS Steven R. Hanna*, Bruce A. Egan**, John Purdum***, and Jen Wagler**** *CSI MS 5C3, George Mason Univ., Fairfax, VA 22030-4444 USA **Egan Environmental, 75 Lothrop St., Beverly, MA 01915 USA ***17 Peters Way, North Attleboro, MA 02760 USA ****URS Greiner Woodward-Clyde, 38 Chauncy St., Boston, MA 02111 USA ABSTRACT The model evaluation exercise addresses the question whether the new models, ADMS and AERMOD, produce improvements over ISC3 when compared with a range of field observations. ADMS and AERMOD have similar state-of-the-art scientific components, whereas ISC3 contains 1960s technology. The five sets of field observations used in the statistical evaluation represent a cross-section of typical scenarios encountered by modelers. The OPTEX data base concerns non-buoyant tracer releases within an oil refinery complex, and the Duke Forest data base involves non-buoyant tracer releases from area and volume sources in an open field. The Kincaid, Indianapolis, and Lovett data bases all deal with buoyant plumes from tall stacks at power plants. However, the settings are quite different, since the Kincaid plant is surrounded by flat farmland, the Indianapolis plant is located in an urban environment, and the Lovett plant is sited in a valley surrounded by complex terrain with monitors at elevations higher than the stack. Analysis of the model performance measures suggest that ISC3 typically overpredicts, has a scatter of about a factor of three, and has about 33% of its predictions within a factor of two of observations.
    [Show full text]
  • Air Dispersion Modelling of Stack Emissions
    Enemalta Air dispersion modelling of stack emissions First phase final report Authors Calori G., Tinarelli G., Radice P., Costa M., Pozzi C., Finardi S. Ref. ARIANET R2013.25 December 2013 (final revision: June 2014) ARIANET s.r.l. via Gilino, 9 – 20128 Milano – ITALY tel. +39-02-27007255 – +39-02-25708084 – http://www.aria-net.it Cap. Soc. € 90.000.00 i.v. – R.E.A. n° 1635752 – Codice Fiscale e Partita IVA 03079010967 Enemalta - Air dispersion modelling of stack emissions Report ARIANET R2013.25 Authors: Calori G., Tinarelli G., Radice P., Costa M., Pozzi C., Finardi S. Customer: Enemalta Corporation Central Administration Building, Church Wharf, Marsa MRS 1000, Malta Reference number: GN/DPS/T/3015/2012 ARIANET R2013.25 Page I Enemalta - Air dispersion modelling of stack emissions Non-technical summary Scope: Electricity for the Maltese Islands is provided by Enemalta Corporation, the state-owned energy utility, which currently operates two power stations: Marsa (MPS) and Delimara (DPS), with a total installed electrical capacity of 720 MW, provided by a mix of conventional steam units, gas turbines and a new combined cycle diesel engines block at DPS. According to plans, MPS is expected to be progressively shut down during 2013 and 2014, and a 200 MW submarine interconnection to the European grid, to be finally commissioned and handed over to Enemalta. Enemalta carried out an air dispersion modelling study for DPS in 2011 as part of the IPPC obligations. However, the revised Delimara IPPC permit requires that this dispersion model is updated to reflect changes in the combustion plants and the installation of the cable interconnector.
    [Show full text]
  • Air Dispersion Modeling Guidelines for Arizona Air Quality Permits
    Air Dispersion Modeling Guidelines for Arizona Air Quality Permits PREPARED BY: AIR QUALITY PERMIT SECTION AIR QUALITY DIVISION ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY September 23, 2013 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................... 1 1.1 Overview of Regulatory Modeling ........................................................................... 2 1.2 Purpose of an Air Quality Modeling Analysis .......................................................... 2 1.3 Authority for Modeling ............................................................................................. 3 1.4 Acceptable Models.................................................................................................... 3 1.5 Overview of Modeling Protocols and Checklists ..................................................... 4 1.6 Overview of Modeling Reports ................................................................................ 5 2 LEVELS OF MODELING ANALYSIS SOPHISTICATION .................................. 5 2.1 Screening Modeling .................................................................................................. 6 2.2 Refined Modeling ..................................................................................................... 7 3 MODELING ANALYSIS FEATURES ..................................................................... 10 3.1 Modeling Worst-Case Scenarios............................................................................
    [Show full text]