The Toyota Way Model: an Alternative Framework for Lean Construction Shang Gao∗ and Sui Pheng Low
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Decoding the DNA of the Toyota Production System
www.hbrreprints.org The Toyota story has been intensively researched and Decoding the DNA of painstakingly documented, yet what really happens inside the Toyota Production the company remains a mystery. Here’s new insight into the unspoken rules that System give Toyota its competitive edge. by Steven Spear and H. Kent Bowen Included with this full-text Harvard Business Review article: 1 Article Summary The Idea in Brief—the core idea The Idea in Practice—putting the idea to work 2 Decoding the DNA of the Toyota Production System 12 Further Reading A list of related materials, with annotations to guide further exploration of the article’s ideas and applications Reprint 99509 Decoding the DNA of the Toyota Production System The Idea in Brief The Idea in Practice Toyota’s renowned production system (TPS) TPS’s four rules: clude that their demand on the next ma- has long demonstrated the competitive ad- chine doesn’t match their expectations. All work is highly specified in its content, vantage of continuous process improve- They revisit the organization of their pro- sequence, timing, and outcome. ment. And companies in a wide range of duction line to determine why the machine Employees follow a well-defined sequence of industries—aerospace, metals processing, was not available, and redesign the flow steps for a particular job. This specificity en- consumer products—have tried to imitate path. ables people to see and address deviations TPS. Yet most fail. immediately—encouraging continual learn- Any improvement to processes, worker/ Why? Managers adopt TPS’s obvious prac- ing and improvement. -
Mcgraw Hill Construction
SmartMarket Report Lean Construction Leveraging Collaboration and Advanced Practices to Increase Project Efficiency Premier Partner: ■ Design and Construction Intelligence SmartMarket Report McGraw Hill Construction Lean Construction: Leveraging Collaboration and Advanced President Practices to Increase Project Keith Fox EfficiencySmartMarket Report About McGraw Hill Vice President, Product Development Executive Editor Kathryn E. Cassino Harvey M. Bernstein, F.ASCE, LEED AP Construction McGraw Hill Construction’s data, Editorial Advisor and Contributor McGraw Hill Construction analytics, and media businesses— Research & Analytics/ Stephen A. Jones Industry Insights & Alliances Dodge, Sweets, Architectural Record, Editorial Director GreenSource, and Engineering Vice President, Industry Michele A. Russo, LEED AP News-Record— create opportunities Insights & Alliances Harvey M. Bernstein, F.ASCE, LEED AP Managing Editor for owners, architects, engineers, Donna Laquidara-Carr, LEED AP contractors, building product Senior Director, Research & Analytics manufacturers, and distributors to Burleigh Morton Senior Director, Head of Marketing strengthen their market position, size Director, Green Content & William Taylor their markets, prioritize prospects, Research Communications and target and build relationships Michele A. Russo, LEED AP Manager, Content Operations Juan Ramos that will win more business. McGraw Hill Construction serves more than Reproduction or dissemination Art Directors one million customers through its of any information contained -
Moving-On — Beyond Lean Thinking
Moving-on — beyond lean thinking Lauri Koskela1 Abstract Lean Thinking is currently often positioned as the underlying theory of lean production among practitioners and academics, although its originators, Womack and Jones, seem not to have presented it as a theory. This paper endeavours to analyze whether Lean Thinking can be viewed as a theory of lean production. For this purpose, a critical assessment of Lean Thinking is carried out. Lean Thinking is argued to lack an adequate conceptualization of production, which has led to imprecise concepts, such as the term “value”. The five principles of Lean Thinking do not systematically cover value generation, and they do not always encapsulate the core topics in their respective areas. The failure to trace the origin of lean concepts and principles reduces the opportunity to justify and explain them. Despite claims for generality, the application area of the five lean principles is limited to the transformation of mass production, with, for instance, one-of-a-kind production and construction being largely out of scope. It is concluded that it is opportune to move on beyond Lean Thinking, towards a generic theory of production, for acquiring a solid foundation for designing, operating and improving production systems. Keywords: Lean thinking, theory, production Introduction “Lean production is ‘lean’ because it uses less of everything compared with mass production: half the human effort in the factory, half the manufacturing space, half the investments in tools, half the engineering hours to develop a new product in half the time.” This characterization of lean production, as presented in the book The machine that changed the world by Womack, Jones and Roos (1990), captured the attention of production practitioners and researchers worldwide. -
The Toyotatoyota Wayway (The Company That Invented Lean Production)
TheThe ToyotaToyota WayWay (The Company that invented Lean Production) 1414 ManagementManagement PrinciplesPrinciples fromfrom thethe World’sWorld’s GreatestGreatest Manufacturer Manufacturer By: Jeffrey K. Liker (Paperback,330p,ISBN 0-07-058747-7,Rs. 250) (Tata McGraw-Hill) Why to read this book ? •• You’ll learn how Toyota creates an ideal environment for implementing Lean techniques & tools by :: -Fostering an atmosphere of continuous improvement and learning -Satisfying customers (and eliminating waste at the same time) -Getting quality right the first time -Grooming leaders from within rather than recruiting them from the outside -Teaching all employees to become problem solver -Growing together with suppliers and partners for mutual benefits About Toyota •• Market capitalization over $ 105 billion; 2,40,000 employees •• 3rd Largest auto manufacturer in the world; behind GM & Ford •• Global Vehicle sale of over 6 million per year in 170 countries •• Big Brands like Corolla, Camry, Lexus •• Annual Profit margin: 8.3 times higher than industry average Contents… •• DevelopmentDevelopment ofof ToyotaToyota ProductionProduction SystemSystem “TPS”“TPS” (5-9)(5-9) •• FundamentalsFundamentals ofof TPSTPS (10-15)(10-15) •• TheThe ToyotaToyota PrinciplesPrinciples (16-19)(16-19) •• WhatWhat cancan bebe learntlearnt fromfrom ToyotaToyota (20-28)(20-28) •• HowHow toto adoptadopt TPSTPS (29-32)(29-32) DevelopmentDevelopment ofof ToyotaToyota ProductionProduction SystemSystem (TPS)(TPS) •• Toyota customer requirement was in small lots & different verities unlike Ford & GM using ‘mass production’ concepts •• These requirement is to be met with same assembly line •• Toyota was having cash crunch and there was no stable supply chain •• Toyota studied that ‘mass production’ concepts cannot be feasible in Japan. Ford & GM were facing many issues due to same. -
Learning to See Waste Would Dramatically Affect This Ratio
CHAPTER3 WASTE 1.0 Why Studies have shown that about 70% of the activities performed in the construction industry are non-value add or waste. Learning to see waste would dramatically affect this ratio. Waste is anything that does not add value. Waste is all around, and learning to see waste makes that clear. 2.0 When The process to see waste should begin immediately and by any member of the team. Waste is all around, and learning to see waste makes this clear. CHAPTER 3: Waste 23 3.0 How Observations Ohno Circles 1st Run Studies/Videos Value Stream Maps Spaghetti Diagrams Constant Measurement 4.0 What There are seven common wastes. These come from the manufacturing world but can be applied to any process. They specifically come from the Toyota Production System (TPS). The Japanese term is Muda. There are several acronyms to remember what these wastes are but one of the more common one is TIMWOOD. (T)ransportation (I)ventory (M)otion (W)aiting (O)ver Processing (O)ver Production (D)efects. Transportation Unnecessary movement by people, equipment or material from process to process. This can include administrative work as well as physical activities. Inventory Product (raw materials, work-in-process or finished goods) quantities that go beyond supporting the immediate need. Motion Unnecessary movement of people or movement that does not add value. Waiting Time when work-in-process is waiting for the next step in production. 24 Transforming Design and Construction: A Framework for Change Look for and assess opportunities to increase value through waste reduction and elimination. -
SC2020: Toyota Production System & Supply Chain
SC2020: Toyota Production System & Supply Chain by Macharia Brown Bachelor of Science in Comparative Politics United States Military Academy, West Point 2003 Submitted to Zaragoza Logistics Center in Fulfillment of the Requirement for the Degree of Master of Engineering in Logistics and Supply Chain Management at the Zaragoza Logistics Center June 2005 © 2005 Brown, Macharia. All rights reserved The author hereby grant to M.I.T and ZLC permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author Zaragoza Logistics Center May 10th, 2005 Certified by Prashant Yadav, PhD ZLC Thesis Supervisor Approved by Larry Lapide, PhD. Research Director, MIT-CTL Brown, TPS 0 Toyota Production System & Supply Chain by Macharia Brown Bachelor of Science in Comparitive Politics United States Military Academy, West Point 2003 Submitted to Zaragoza Logistics Center in Fulfillment of the Requirement for the Degree of Master of Engineering in Logistics and Supply Chain Management Abstract Over the past 50 years Toyota created and honed a production system that fostered its ascension in the automotive industry. Furthermore, the concepts that fuel Toyota’s production system extend beyond its manufacturing walls to the entire supply chain, creating a value chain where every link is profitable with an unwavering focus on teamwork, communication, efficient use of resources, elimination of waste, and continuous improvement. This report is a part of MIT’s Supply Chain 2020 (SC2020) research project focusing on Toyota’s production system and supply chain. The study begins by examining the automotive industry, evolution of top 5 automotive companies, and Toyota’s positioning against its main competitors. -
The Toyota Way
The Toyota Way The Toyota Way is a set of principles and behaviors that underlie the Toyota Motor Corporation's managerial approach and production system. Toyota first summed up its philosophy, values and manufacturing ideals in 2001, calling it “The Toyota Way 2001.” It consists of principles in two key areas: continuous improvement, and respect for people.[1][2][3] Contents [hide] 1 Overview of the principles 2 Research findings o 2.1 Long-term philosophy o 2.2 Right process will produce right results o 2.3 Value to organization by developing people o 2.4 Solving root problems drives organizational learning 3 Translating the principles 4 See also 5 References 6 Further reading Overview of the principles The two focal points of the principles are continuous improvement and respect for people. The principles for a continuous improvement include establishing a long-term vision, working on challenges, continual innovation, and going to the source of the issue or problem. The principles relating to respect for people include ways of building respect and teamwork. Research findings In 2004, Dr. Jeffrey Liker, a University of Michigan professor of industrial engineering, published "The Toyota Way." In his book Liker calls the Toyota Way, "a system designed to provide the tools for people to continually improve their work."[4] The system can be summarized in 14 principles.[5] According to Liker, the 14 principles of The Toyota Way are organized in four sections: (1) long-term philosophy, (2) the right process will produce the right results, (3) add value to the organization by developing your people, and (4) continuously solving root problems drives organizational learning. -
Mistakeproofing the Design of Construction Processes Using Inventive Problem Solving (TRIZ)
www.cpwr.com • www.elcosh.org Mistakeproofing The Design of Construction Processes Using Inventive Problem Solving (TRIZ) Iris D. Tommelein Sevilay Demirkesen University of California, Berkeley February 2018 8484 Georgia Avenue Suite 1000 Silver Spring, MD 20910 phone: 301.578.8500 fax: 301.578.8572 ©2018, CPWR-The Center for Construction Research and Training. All rights reserved. CPWR is the research and training arm of NABTU. Production of this document was supported by cooperative agreement OH 009762 from the National Institute for Occupational Safety and Health (NIOSH). The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH. MISTAKEPROOFING THE DESIGN OF CONSTRUCTION PROCESSES USING INVENTIVE PROBLEM SOLVING (TRIZ) Iris D. Tommelein and Sevilay Demirkesen University of California, Berkeley February 2018 CPWR Small Study Final Report 8484 Georgia Avenue, Suite 1000 Silver Spring, MD 20910 www. cpwr.com • www.elcosh.org TEL: 301.578.8500 © 2018, CPWR – The Center for Construction Research and Training. CPWR, the research and training arm of the Building and Construction Trades Department, AFL-CIO, is uniquely situated to serve construction workers, contractors, practitioners, and the scientific community. This report was prepared by the authors noted. Funding for this research study was made possible by a cooperative agreement (U60 OH009762, CFDA #93.262) with the National Institute for Occupational Safety and Health (NIOSH). The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH or CPWR. i ABOUT THE PROJECT PRODUCTION SYSTEMS LABORATORY (P2SL) AT UC BERKELEY The Project Production Systems Laboratory (P2SL) at UC Berkeley is a research institute dedicated to developing and deploying knowledge and tools for project management. -
Isao Kato Article on Shigeo Shingo's Role at Toyota
Mr. Shigeo Shingo’s P-Course and Contribution to TPS By Isao Kato Retired Manager Training and Development Toyota Motor Corporation July 2006 © Isao Kato www.ArtofLean.com Mr. Shigeo Shingo taught an industrial engineering course at Toyota Motor Corporation and then decades later at Toyota affiliated companies starting in latter part of 1955. After 1960 and up until the mid 1980’s I organized his classes, edited the materials, as well as coordinated the majority of his training visits to the company. Before that time it was handled by one of my senior colleagues. Despite several myths and wide spread rumors the only course Mr. Shingo actually taught at Toyota was something called the P-course (the P stands for production) and he never was an instructor to Mr. Ohno or any other senior executives at that time. In fact they rarely met. However his association with Toyota Motor Corporation as an instructor did continue for close to 30 years and was highly beneficial to both parties although there were frustrations toward the end on both sides. As requested I will explain his actual role on the following pages for those interested in the actual history of events. There were actually four different versions of the P-course taught by Mr. Shingo that were held on average a couple of times per year during this period. There was also a longer version of the P-course that combined the different elements together that was taught every three or four years. I will outline the material below. The participants in the course were primarily young engineers in manufacturing. -
A Simulation of Lean Construction Principles
Pollesch, P., Rovinsky, A., Alvarado III, R., and Alves, T.C.L. (2017). “House of Cards – a Simulation of Lean Construction Principles” In: LC3 2017 Volume II – Proceedings of the 25th Annual Conference of the International Group for Lean Construction (IGLC), Walsh, K., Sacks, R., Brilakis, I. (eds.), Heraklion, Greece, pp. 373–380. DOI: https://doi.org/10.24928/2017/0212 HOUSE OF CARDS – A SIMULATION OF LEAN CONSTRUCTION PRINCIPLES Paul Pollesch1, Alexander Rovinsky2, Raul Alvarado III3, and Thais da C. L. Alves4 Abstract: The "House of Cards" simulation was developed to stimulate discussion and improve the application of lean production concepts (5S, flow, waste, kaizen, transparency, and collaboration) to construction engineering and management. It is a simple, scalable, hands-on exercise that enables a facilitator to lead teams to intuitively grasp lean concepts and their benefits to construction processes. The simulation requires minimal resources for each team: 3-4 players, a deck of playing cards, a timer, and a playing surface. “House of Cards” presents six phases of gameplay, and progresses from a worst-case scenario to an optimized ideal. The objective is to play the cards as quickly as possible to construct a 13-story building. As in construction, there is a logical sequence of work required. Lower floors must be built before upper floors, structural work must precede mechanical, and mechanical must precede finish work. This simulation was developed with a construction project context, but can easily be adapted to other industries. The analogies can be tailored to meet other industrial processes, and the floors can be changed to different parts of assembly or production lines. -
Lean Methodology and Its Derivates Usage for Production Systems in Modern Industry
Applied Engineering Letters Vol.2, No.4, 144-148 (2017) e-ISSN: 2466-4847 LEAN METHODOLOGY AND ITS DERIVATES USAGE FOR PRODUCTION SYSTEMS IN MODERN INDUSTRY Marko Miletić1, Ivan Miletić1 1Faculty of Engineering, University of Kragujevac, Serbia Abstract: ARTICLE HISTORY With lean methodology usage being the only way to stay competitive on Received 15.11.2017. nowadays market, it is important to implement it and spread it through the Accepted 07.12.2017. organization. Available 15.12.2017. In this paper, purpose of lean is explained, the most important definition and tools are given and differences between problem solving approaches are explained. KEYWORDS It can be concluded that problem solving approaches are in first look Lean Manufacturing, World Class Manufacturing, Toyota different, having also different number of steps, but they are adapted to the Production System, Basic Tools, company in which they are used and that they depend on the size, Continuous Improvement complexity and expected closing time of project. 1. INTRODUCTION which is initiated by management and bottom-up initiated by people on shop floor. The concept of lean methodology is nowadays Therefore, TPS is used in many industries and widely used in companies around the world in companies, adapted to its products and needs and order to maximise production by minimising loses now defined as common used methodologies such at the same time. Roots of integration of entire as: Lean [1], Lean Six Sigma [2], World Class production system done in flow was made by Manufacturing, Toyota Production System [3], Ford Henry Ford in 1913. However, true usage of lean Production System, Bosch Production System, etc… concept was started by Toyota owner Kiischiro Purpose of this paper is to show tools widely Toyoda and engineer Kaiichi Ohno after WWII, and used in these methodologies and present their finally summarized in 1980s rebranding their TPS main foundations. -
Lean Production and the Toyota Production System ± Or, the Case of the Forgotten Production Concepts Ian Hampson University of New South Wales
Lean Production and the Toyota Production System ± Or, the Case of the Forgotten Production Concepts Ian Hampson University of New South Wales Advocates and critics alike have accepted `lean' images of the Toyota production system. But certain production concepts that are integral to Toyota production system theory and practice actually impede `leanness'. The most important of these are the concepts of heijunka, or levelled (`balanced') production, and muri, or waste from overstressing machines and personnel. Actual Toyota production systems exist as a compromise between these concepts and the pursuit of leanness via kaizen. The compromise between these contrasting tendencies is in¯uenced by the ability of unions and other aspects of industrial relations regulation to counter practices such as short- notice overtime and `management by stress'. Introduction From the late 1980s, debate around work organization converged on the concept of `lean production' which was, according to its advocates, a `post-Fordist' system of work that is at once supremely ef®cient and yet `humane', even democratic (Kenney and Florida, 1988: 122; Adler, 1993; Mathews, 1991: 9, 21; 1988: 20, 23). How- ever, critical research found that, rather than being liberating, lean production can actually intensify work to the point where worker stress becomes a serious problem, because it generates constant improvements (kaizen) by applying stress and ®xing the breakdowns that result. It thus attracted such descriptions as `management by stress', `management by blame', `management by fear' (Parker and Slaughter, 1988; Sewell and Wilkinson, 1992; Dohse et al., 1985). Economic and Industrial Democracy & 1999 (SAGE, London, Thousand Oaks and New Delhi), Vol.