Clinical and Functional Correlations of the Difference Between Slow Vital
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Peak Flow Measure: an Index of Respiratory Function?
International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Peak Flow Measure: An Index of Respiratory Function? D. Devadiga, Aiswarya Liz Varghese, J. Bhat, P. Baliga, J. Pahwa Department of Audiology and Speech Language Pathology, Kasturba Medical College (A Unit of Manipal University), Mangalore -575001 Corresponding Author: Aiswarya Liz Varghese Received: 06/12/2014 Revised: 26/12/2014 Accepted: 05/01/2015 ABSTRACT Aerodynamic analysis is interpreted as a reflection of the valving activity of the larynx. It involves measuring changes in air volume, flow and pressure which indicate respiratory function. These measures help in determining the important aspects of lung function. Peak expiratory flow rate is a widely used respiratory measure and is an effective measure of effort dependent airflow. Aim: The aim of the current study was to study the peak flow as an aerodynamic measure in healthy normal individuals Method: The study group was divided into two groups with n= 60(30 males and 30 females) in the age range of 18-22 years. The peak flow was measured using Aerophone II (Voice Function Analyser). The anthropometric measurements such as height, weight and Body Mass Index was calculated for all the participants. Results: The peak airflow was higher in females as compared to that of males. It was also observed that the peak air flow rate was correlating well with height and weight in males. Conclusions: Speech language pathologist should consider peak expiratory airflow, a short sharp exhalation rate as a part of routine aerodynamic evaluation which is easier as compared to the otherwise commonly used measure, the vital capacity. -
Spirometry Basics
SPIROMETRY BASICS ROSEMARY STINSON MSN, CRNP THE CHILDREN’S HOSPITAL OF PHILADELPHIA DIVISION OF ALLERGY AND IMMUNOLOGY PORTABLE COMPUTERIZED SPIROMETRY WITH BUILT IN INCENTIVES WHAT IS SPIROMETRY? Use to obtain objective measures of lung function Physiological test that measures how an individual inhales or exhales volume of air Primary signal measured–volume or flow Essentially measures airflow into and out of the lungs Invaluable screening tool for respiratory health compared to BP screening CV health Gold standard for diagnosing and measuring airway obstruction. ATS, 2005 SPIROMETRY AND ASTHMA At initial assessment After treatment initiated and symptoms and PEF have stabilized During periods of progressive or prolonged asthma control At least every 1-2 years: more frequently depending on response to therapy WHY NECESSARY? o To evaluate symptoms, signs or abnormal laboratory tests o To measure the effect of disease on pulmonary function o To screen individuals at risk of having pulmonary disease o To assess pre-operative risk o To assess prognosis o To assess health status before beginning strenuous physical activity programs ATS, 2005 SPIROMETRY VERSUS PEAK FLOW Recommended over peak flow meter measurements in clinician’s office. Variability in predicted PEF reference values. Many different brands PEF meters. Peak Flow is NOT a diagnostic tool. Helpful for monitoring control. EPR 3, 2007 WHY MEASURE? o Some patients are “poor perceivers.” o Perception of obstruction variable and spirometry reveals obstruction more severe. o Family members “underestimate” severity of symptoms. o Objective assessment of degree of airflow obstruction. o Pulmonary function measures don’t always correlate with symptoms. o Comprehensive assessment of asthma. -
Epidemiology and Pulmonary Physiology of Severe Asthma
Epidemiology and Pulmonary Physiology of Severe Asthma a b Jacqueline O’Toole, DO , Lucas Mikulic, MD , c, David A. Kaminsky, MD * KEYWORDS Demographics Phenotype Health care utilization Pulmonary function Lung elastic recoil Ventilation heterogeneity Gas trapping Airway hyperresponsiveness KEY POINTS The definition of severe asthma is still a work in progress. The severity of asthma is predictive of higher health care utilization. Cluster analysis is useful in characterizing severe asthma phenotypes. Airway hyperresponsiveness in severe asthma is a result of abnormal airflow, lung recoil, ventilation, and gas trapping. Patients with severe asthma may have a reduced perception of dyspnea. INTRODUCTION Severe asthma is a characterized by a complex set of clinical, demographic, and physiologic features. In this article, we review both the epidemiology and pulmonary physiology associated with severe asthma. DEMOGRAPHICS OF SEVERE ASTHMA Asthma has long been recognized as a worldwide noncommunicable disease of importance. Within the population of individuals with asthma, there is a subgroup of individuals at high risk for complications, exacerbations, and a poor quality of life. The authors have nothing to disclose. a Department of Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Bur- lington, VT 05401, USA; b Division of Pulmonary and Critical Care Medicine, University of Ver- mont Medical Center, Given D208, 89 Beaumont Avenue, Burlington, VT 05405, USA; c Division of Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Given D213, 89 Beaumont Avenue, Burlington, VT 05405, USA * Corresponding author. E-mail address: [email protected] Immunol Allergy Clin N Am 36 (2016) 425–438 http://dx.doi.org/10.1016/j.iac.2016.03.001 immunology.theclinics.com 0889-8561/16/$ – see front matter Ó 2016 Elsevier Inc. -
BSL Lesson 13
Physiology Lessons Lesson 13 for use with the PULMONARY FUNCTION II Biopac Student Lab Pulmonary Flow Rates Forced Expiratory Volume (FEV1,2,3) PC under Windows 95/98/NT 4.0/2000 Maximal Voluntary Ventilation (MVV) or Macintosh Manual Revision 12132000.PL3.6.6-ML3.0.7 Number of cycles in 12 second interval Average Volume Richard Pflanzer, Ph.D. per cycle Associate Professor Indiana University School of Medicine Purdue University School of Science J.C. Uyehara, Ph.D. Biologist Number of cycles/minute = Number of cycles in 12 second interval X 5 MVV = (Average volume per cycle) X (Number of cycles per minute) BIOPAC Systems, Inc. William McMullen Vice President BIOPAC Systems, Inc. BIOPAC Systems, Inc. 42 Aero Camino, Santa Barbara, CA 93117 (805) 685-0066, Fax (805) 685-0067 Email: [email protected] Web Site: http://www.biopac.com Page 2 Lesson 13: Pulmonary Function II Biopac Student Lab V3.0 I. INTRODUCTION The respiratory or pulmonary system performs the important functions of supplying oxygen (O2) during inhalation, removing carbon dioxide (CO2) during exhalation, and adjusting the acid-base balance (pH) of the body by removing acid-forming CO2. Because oxygen is necessary for cellular metabolism, the amount of air that the pulmonary system provides is important in setting the upper limits on work capacities or metabolism. Therefore, the measurement of lung volumes and the rate of air movement (airflow) are important tools in assessing the health and capacities of a person. In this lesson, you will measure: Forced Vital Capacity (FVC), which is the maximal amount of air that a person can forcibly exhale after a maximal inhalation. -
Restrictive Lung Disease
Downloaded from https://academic.oup.com/ptj/article/48/5/455/4638136 by guest on 29 September 2021 RESTRICTIVE LUNG DISEASE WARREN M. GOLD, M.D. RESTRICTIVE LUNG DISEASE is a These disorders can be divided into two pattern of abnormal lung function defined by groups: extrapulmonary and pulmonary. a decrease in lung volume (Fig. I).1,2 The In extrapulmonary restriction, an abnormal total lung capacity is decreased and, in severe increase in the stiffness of the chest wall (kypho restrictive defects, all of the subdivisions of the scoliosis) restricts the lung volumes, as does total lung capacity including vital capacity, respiratory muscle weakness (poliomyelitis or functional residual capacity, and residual vol muscular dystrophy). These extrapulmonary ume are decreased. In mild or moderately se causes of pulmonary restriction are treated vere restrictive defects, the residual volume may be normal or slightly increased. CLINICAL DISORDERS CAUSING TABLE 1 RESTRICTIVE LUNG DISEASE CAUSES OF RESTRICTIVE LUNG DISEASE Restrictive lung disease is not a specific clin I. Extrapulmonary restriction 3 ical entity, but only one of several patterns of A. Chest wall stiffness (kyphoscoliosis) B. Respiratory-muscle weakness (muscular dystrophy)4 abnormal lung function. It is produced by a C. Pleural disease (pneumothorax)5 number of clinical disorders (see Table 1). II. Pulmonary restriction A. Surgical resection (pneumonectomy)6.7 Dr. Gold: Director, Pulmonary Laboratory and Re B. Tumor (bronchogenic carcinoma or metastatic tumor)8 search Associate in Cardiology (Pulmonary Physiology), C. Heart disease (hypertensive, arteriosclerotic, rheu Children's Hospital Medical Center; Associate in Pedi matic, congenital)9 atrics and Tutor in Medical Science, Harvard Medical 10 11 School, Boston, Massachusetts. -
Standardisation of Spirometry
Eur Respir J 2005; 26: 319–338 DOI: 10.1183/09031936.05.00034805 CopyrightßERS Journals Ltd 2005 SERIES ‘‘ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING’’ Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series Standardisation of spirometry M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger CONTENTS AFFILIATIONS Background ............................................................... 320 For affiliations, please see Acknowledgements section FEV1 and FVC manoeuvre .................................................... 321 Definitions . 321 CORRESPONDENCE Equipment . 321 V. Brusasco Requirements . 321 Internal Medicine University of Genoa Display . 321 V.le Benedetto XV, 6 Validation . 322 I-16132 Genova Quality control . 322 Italy Quality control for volume-measuring devices . 322 Fax: 39 103537690 E-mail: [email protected] Quality control for flow-measuring devices . 323 Test procedure . 323 Received: Within-manoeuvre evaluation . 324 March 23 2005 Start of test criteria. 324 Accepted after revision: April 05 2005 End of test criteria . 324 Additional criteria . 324 Summary of acceptable blow criteria . 325 Between-manoeuvre evaluation . 325 Manoeuvre repeatability . 325 Maximum number of manoeuvres . 326 Test result selection . 326 Other derived indices . 326 FEVt .................................................................. 326 Standardisation of FEV1 for expired volume, FEV1/FVC and FEV1/VC.................... 326 FEF25–75% .............................................................. 326 PEF.................................................................. 326 Maximal expiratory flow–volume loops . 326 Definitions. 326 Equipment . 327 Test procedure . 327 Within- and between-manoeuvre evaluation . 327 Flow–volume loop examples. 327 Reversibility testing . 327 Method . -
Interrelationship Between Lung Volume, Expiratory Flow, and Lung Transfer Factor in Fibrosing Alveolitis
Thorax: first published as 10.1136/thx.36.11.858 on 1 November 1981. Downloaded from thorax 1981 ;36:858-862 Interrelationship between lung volume, expiratory flow, and lung transfer factor in fibrosing alveolitis JN PANDE From the Respiratory Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India ABSTRACT Fifty patients with fibrosing alveolitis studied on 104 occasions exhibited significant direct correlations between vital capacity (VC), maximum mid-expiratory flow rate (MMFR), and transfer factor for carbon monoxide (TLCO). Forced expired volume in the first second (FEV,)/VC ratio bore a weak negative correlation with VC. Peak expiratory flow, MMFR, and maximum flow rates at 50 % and 25 % of VC were often reduced in patients with severe grades of pulmonary dys- function. It appears that as the severity of the fibrotic process increases, the lung volumes shrink and the transfer factor for CO decreases. The total lung capacity decreases predominantly on account of reduction in VC. With a decrease in lung volume the MMFR also falls. Decrease in flow rates at low lung volumes is greater as compared to the fall in peak flow. The expiratory flow rates how- ever were normal or even increased when related to absolute lung volume. Some patients exhibit disproportionate expiratory slowing as evidenced by a decrease in MMFR which is out of propor- tion to the reduction in VC. These patients also have a reduced FEV1,/VC ratio. These changes are probably the consequence of associated peripheral airway narrowing. copyright. Increased elastic recoil of the lung limiting maximal 33 women. Their age ranged from 16-68 years (mean inflation is considered to be the main abnormality of ± SE 42-1 ± 1-7 years). -
Errors in the Measurement of Vital Capacity a Comparison of Three Methods in Normal Subjects and in Patients with Pulmonary Emphysema
Thorax: first published as 10.1136/thx.28.5.584 on 1 September 1973. Downloaded from Thorax (1973), 28, 584. Errors in the measurement of vital capacity A comparison of three methods in normal subjects and in patients with pulmonary emphysema D. C. S. HUTCHISON, C. E. BARTER', and N. A. MARTELLI2 Chest Unit, King's College Hospital, London SE5 Hutchison, D. C. S., Barter, C. E., and Martelli, N. A. (1973). Thorax, 28, 584-587. Errors in the measurement of vital capacity: a comparison of three methods in normal subjects and in patients with pulmonary emphysema. Three methods of measuring the vital capacity have been compared in six normal subjects and in six with pulmonary emphysema, according to a randomized design. The methods were (a) the inspiratory vital capacity (IVC), (b) the expiratory vital capacity (EVC), and (c) the forced vital capacity (FVC). In normal subjects, there was a small but significant difference between the methods. The residual standard deviation derived from analysis of variance was 94 ml (coefficient of variation 1.7 %). A slight but significant rise in vital capacity with repeated effort was observed. In emphysematous subjects, there was no significant difference between the IVC and EVC methods. The FVC gave values which were, on average, approximately 0.5 litre less copyright. than those obtained by the other methods. The standard deviation in all three methods was substantially greater than for the normal subjects. The FVC is not a suitable method for the measurement of vital capacity in patients with pulmonary emphysema. The EVC is satisfactory, provided it is used with caution, but in practice the IVC is the preferred method. -
Alternative Methods for Assessing Bronchodilator Reversibility In
Thorax 2001;56:713–720 713 Alternative methods for assessing bronchodilator Thorax: first published as 10.1136/thx.56.9.713 on 1 September 2001. Downloaded from reversibility in chronic obstructive pulmonary disease J Hadcroft, P M A Calverley Abstract Chronic obstructive pulmonary disease Background—Bronchodilator reversibil- (COPD) is characterised by airflow limitation ity testing is recommended in all patients which varies little over several months of with chronic obstructive pulmonary dis- observation or after treatment.12 The assess- ease (COPD) but does not predict im- ment of airflow limitation usually relies on provements in breathlessness or exercise spirometric testing and, in particular, the performance. Two alternative ways of forced expiratory volume in 1 second (FEV1) assessing lung mechanics—measurement which is the usual outcome measure in of end expiratory lung volume (EELV) diagnostic bronchodilator reversibility testing.3 using the inspiratory capacity manoeuvre Although useful diagnostically and prognosti- and application of negative expiratory cally,4 spirometric abnormalities are poor pressure (NEP) during tidal breathing to descriptors of the severity of breathlessness in detect tidal airflow limitation—do relate 5 COPD. Likewise, significant changes in FEV1 to the degree of breathlessness in COPD. after inhaled bronchodilators are not necessary Their usefulness as end points in broncho- for improvement in exercise performance or dilator reversibility testing has not been dyspnoea to occur.5–7 Two alternative tech- examined. niques of measuring lung mechanics relatively Methods—We studied 20 patients with easily are now available. Both are better corre- clinically stable COPD (mean age 69.9 lates of breathlessness than FEV , but their (1.5) years, 15 men, forced expiratory vol- 1 reproducibility and sensitivity to change in ume in one second (FEV ) 29.5 (1.6)% pre- 1 response to bronchodilator drugs has not been dicted) with tidal flow limitation as assessed—an important consideration if they assessed by their maximum flow-volume loop. -
Respiratory System Chapter 23
Respiratory System Chapter 23 Pulmonary Volumes and Capacities FIGURE 23.15 1. A spirometer is a device for measuring the volumes of air that move into and out of the respiratory system. Spirometry is the process of taking the measurements. 2. There are four pulmonary volumes. A. Tidal volume is the amount of air that moves in or out of the respiratory system during normal, quiet, at rest breathing. B. Inspiratory reserve is the amount of air that can be taken into the lungs following a normal tidal volume. It is the amount of air "on top" of the tidal volume. C. Expiratory reserve is the amount of air that can be forced out of the lungs following a normal tidal volume. It is the amount of air "below" the tidal volume. D. Residual volume is the amount of air that remains in the lungs after the expiratory reserve. It is the volume of air that cannot be eliminated from the lungs. E. Pulmonary volumes for a young adult male: Tidal volume 500 mL Inspiratory reserve 3000 mL Expiratory reserve 1100 mL Residual volume 1200 mL 3. A pulmonary capacity is two or more pulmonary volumes added together. A. Inspiratory capacity is tidal volume plus inspiratory reserve. This is the amount of air a person can inspire after a normal expiration. B. Functional residual capacity is the expiratory reserve volume plus the residual volume. This is the amount of air in the lungs after a normal expiration. C. Vital capacity is the expiratory reserve plus the tidal volume plus the inspiratory reserve. -
Lung Elastic Recoil and Ventilation Heterogeneity of Diffusion-Dependent Airways in Older People with Asthma and Fixed Airflow Obstruction
AGORA | RESEARCH LETTER Lung elastic recoil and ventilation heterogeneity of diffusion-dependent airways in older people with asthma and fixed airflow obstruction To the Editor: Small airways are abnormal in asthma [1]. One measurement of small airway function is Sacin, derived from the multiple-breath nitrogen washout (MBNW) test. Sacin reflects ventilation heterogeneity in diffusion-dependent airways, and is correlated with airway hyperresponsiveness [2] and asthma control [3]. Theoretically, heterogeneity of diffusion-dependent ventilation can arise due to the heterogeneity of cross-sectional areas of airway openings in terminal airways and the acini [4]. Therefore, Sacin may be affected by structural changes in those airways. The elastic properties of the lung may also affect Sacin,as the phase III slope, a marker of ventilation heterogeneity derived from the single-breath nitrogen washout, correlates with lung compliance in explanted lungs of smokers and in healthy lungs [5]. Reduced lung elastic recoil makes a large contribution to airflow obstruction in asthma [6], particularly in older individuals who may develop fixed airflow obstruction (FAO). FAO typifies chronic obstructive pulmonary disease (COPD) but can occur in older asthmatics who have never smoked and despite adequate treatment [7, 8]. Since FAO is associated with age and Sacin is more abnormal in older asthmatics compared to younger [2], we hypothesised that the increase in Sacin in older people with asthma was due to loss of lung elastic recoil. Therefore, the aim of this study was to examine the relationships between Sacin and elastic recoil pressure and compliance. We enrolled subjects from tertiary hospital clinics who were >40 years old, had ⩽5-pack-year smoking history and a physician diagnosis of asthma. -
“Children Are Not Small Adults!” Derek S
4 The Open Inflammation Journal, 2011, 4, (Suppl 1-M2) 4-15 Open Access “Children are not Small Adults!” Derek S. Wheeler*1,2, Hector R. Wong1,2 and Basilia Zingarelli1,2 1Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, The Kindervelt Laboratory for Critical Care Medicine Research, Cincinnati Children’s Research Foundation, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, USA Abstract: The recognition, diagnosis, and management of sepsis remain among the greatest challenges in pediatric critical care medicine. Sepsis remains among the leading causes of death in both developed and underdeveloped countries and has an incidence that is predicted to increase each year. Unfortunately, promising therapies derived from preclinical models have universally failed to significantly reduce the substantial mortality and morbidity associated with sepsis. There are several key developmental differences in the host response to infection and therapy that clearly delineate pediatric sepsis as a separate, albeit related, entity from adult sepsis. Thus, there remains a critical need for well-designed epidemiologic and mechanistic studies of pediatric sepsis in order to gain a better understanding of these unique developmental differences so that we may provide the appropriate treatment. Herein, we will review the important differences in the pediatric host response to sepsis, highlighting key differences at the whole-organism level, organ system level, and cellular and molecular level. Keywords: Pediatrics, sepsis, shock, severe sepsis, septic shock, SIRS, systemic inflammatory response syndrome, critical care. THE PEDIATRIC HOST RESPONSE TO SEPSIS Sepsis is exceedingly more common in children less than 1 year of age, with rates 10-fold higher during infancy Key Differences at the Whole-organism Level compared to childhood and adolescence [2].