Experimental Investigations of Using Silica Aerogel
Total Page:16
File Type:pdf, Size:1020Kb
EXPERIMENTAL INVESTIGATIONS OF USING SILICA AEROGEL TO HARVEST UNCONCENTRATED SUNLIGHT IN A SOLAR THERMAL RECEIVER By Nisarg Hansaliya Sungwoo Yang Louie Elliott Assistant Professor of Chemical Engineering Assistant Professor of Mechanical (Chair) Engineering (Co-Chair) Prakash Damshala Professor (Committee Member) EXPERIMENTAL INVESTIGATIONS OF USING SILICA AEROGEL TO HARVEST UNCONCENTRATED SUNLIGHT IN A SOLAR THERMAL RECEIVER By Nisarg Hansaliya A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master of Science: Engineering The University of Tennessee at Chattanooga Chattanooga, Tennessee December 2019 ii ABSTRACT Significant demand exists for solar thermal heat in the mid-temperature ranges (120 oC – 220 oC). Generating heat in this range requires expensive optics or vacuum systems in order to utilize the diluted solar energy flux reaching the earth’s surface. Current flat plate solar collectors have significant heat losses and achieving higher temperatures without using concentrating optics remains a challenge. In this work, we designed a prototype flat plate collector using silica- aerogel. Optically Transparent Thermally Insulating silica aerogel with its high transmittance and low thermal conductivity is used as a volumetric shield. The prototype collector was subjected to ambient testing conditions during the months of winter. The collector reached the temperatures of 220 oC and a future prototype design is proposed to incorporate large aerogel monoliths for scaled up applications. This work opens up possibilities solar energy being harnessed in intermediate temperature range using a non-concentrated flat plate collector. iii DEDICATION This is dedicated to all the mentors, professors and teachers I have had the privilege to learn from. iv ACKNOWLEDGEMENTS I would like to thank Dr. Sungwoo Yang for introducing me to the thesis topic and being a fantastic mentor during the thesis process. Also, Dr. Louie Elliott for being a beacon of light and guide in the research process. I would like to thank Dr. Prakash Damshala for his continuous support in the pursuit of my degree. I would like to thank Elise Strobach from Massachusetts Institute of Technology and her team for producing the initial samples of Aerogel. Particular thanks to Ben Swords for his assistance in fabricating the critical point dryer. v TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii DEDICATION ............................................................................................................................... iv ACKNOWLEDGEMENTS ............................................................................................................ v LIST OF ABBREVIATIONS ........................................................................................................ xi LIST OF SYMBOLS ................................................................................................................... xiii CHAPTER I. INTRODUCTION ........................................................................................................ 1 Current energy landscape………………………………………………………………………….2 Different types of solar collectors ................................................................................ 5 Evacuated tube collectors ............................................................................................. 8 Current research at University of Tennessee and thesis objectives ........................... 10 II. LITERATURE REVIEW AND BACKGROUND .................................................... 12 Literature review ........................................................................................................ 12 Overview of aerogel ................................................................................................... 14 Silica-aerogel .............................................................................................................. 14 Aerogel applications ................................................................................................... 17 III. METHODOLOGY AND DISCUSSION ................................................................... 18 Optically Transparent and Theramlly Insulating (OTTI) aerogel .............................. 18 Heat transfer within aerogel ....................................................................................... 19 Optical measurements and characterization ............................................................... 22 Synthesis of OTTI aerogel .......................................................................................... 26 Design of the Critical Point Dryer (CPD) .................................................................. 30 OTTI aerogel based solar receiver design .................................................................. 32 Limitations of study .................................................................................................... 44 IV. CONCLUSION AND FUTURE WORK ................................................................... 46 vi Conclusion .................................................................................................................. 46 APPENDIX A. EXPERIMENTAL DATA COLLECTION FIGURES .......................................... 52 B. FUTURE PROTOTYPE ......................................................................................... 60 VITA ............................................................................................................................................. 64 vii LIST OF TABLES 1 Various solar collectors and their applications. ...................................................................... 7 2 Physical properties of silica aerogels .................................................................................... 16 3 Molar ratio for the TMOS Aerogel ....................................................................................... 29 4 Sample thickness of Silica Aerogels ..................................................................................... 29 5 Summary of the experimental data collection for solar receiver without glass cover .......... 38 6 Summary of the experimental data collection for solar receiver with glass cover. .............. 38 viii LIST OF FIGURES 1 Projected global energy demand (source: from the Royal Society of Chemistry’s paper by Yu [8] based on renewable energy scenario to 2040, published by the European Renewable Energy Council, and reports of the German Advisory Council on global change .............................................................................................................................. 3 2 Types of solar energy conversion ........................................................................................... 4 3a Types of solar collectors ......................................................................................................... 5 3b Schematic of different types of solar collectors ...................................................................... 6 4 Schematic of evacuated tube collector (open source) ............................................................. 8 5 Collector efficiency of flat plate collector and evacuated tube collector [10]. Evacuated tube collectors operate at higher target temperatures than any other collector ................ 9 6 Structure of the Silica Aerogel .............................................................................................. 15 7 Different applications of aerogels [33, 35] ........................................................................... 17 8 Heat transfer within Aerogel [38] ......................................................................................... 19 9 Light propagation through aerogel, Intensity of light within the aerogel layer depends on the distance into the layer z and the polar angle θ as shown on the right [39] ......... 23 10 Aerogel holder for Transmittance measurement. Aerogel sample is placed with the mirrors surrounding from all sides and incident light hitting middle of the sample ...... 23 11 Aerogel Holder for reflectance measurement. The sample is placed on the platform and then placed inside the UV-VIS NIR in order to make the sample incident to the incoming light ................................................................................................................ 24 12 Spectral Transmission of TMOS aerogel sample. Blue line represents the experimental transmittance of the sample. Yellow region is AM 1.5 standard solar spectrum. The red dotted line is the cumulative loss in transmittance, with increased wavelength the cumulative loss is increased due to high scattering .............................. 24 ix 13 Spectral Reflectance of TMOS Aerogel Sample. Blue line is collected experimentally with in the 300-2500 nm wavelength. Reflectance becomes less dominant at higher wavelength due to high scattering.................................................................................. 25 14 Steps of Silica aerogel with the method of supercritical drying [40] ................................... 26 15 Pressure-temperature correlation for solid- liquid-vapor phase equilibrium diagram[35]. The path shown does not cross any phase boundary, instead it passes through the critical point into the super critical region where the distinction of phases