Solar Collector Z Solar Hot Water Heater

Total Page:16

File Type:pdf, Size:1020Kb

Solar Collector Z Solar Hot Water Heater Asian Workshop on Energy and Environmental Technologies, February 13, 2008 Bureau of Environment, Tokyo Metropolitan Government Solar Thermal System in Buildings - Solar thermal technology - Mitsuhiro Udagawa Professor Department of Architecture Kogakuin University Tokyo, Japan [email protected] 1 Solar Thermal Technology in Buildings Systems z Hot Water Heating z Space Heating z Cooling Components z Solar Collector z Solar Hot Water Heater 2 1 Development of Solar cooling (1974) Total Floor Area 127m2 Collector area: 102m2 Heat storage tank: 5m3 Absorption chiller: 7kW, 75 – 90 degrees C (Yazaki, Solar House One) 3 Solar Collector - Flat plate collector - 熱媒出口fluid outlet Transparent insulation Glass 透過体cover (plastic film)透明断熱材 Absorber集熱板 plate 固定金具Mounting hook Insulation断熱材 受熱箱Case 熱媒入口fluid inlet Super図3.太陽集熱器の構造 Blue Panel (Yazaki Corp.) 4 2 Solar Collector - Evacuated Tubular Collector - Evacuated Tubular Collectors on the top of the Tokyo International Forum 5 Solar Water Heater Tank 200-300L Collector 4-6m2 City water Cumulative installation: 5,000,0000 units Hot water Collector area: 3m2 Installation: 250,000-300,000Yen 6 Auxiliary Boiler 3 Solar Hot Water Heating system •Solar collector and Heat Storage tank •Pump with heat collection control system Collector 6-8m2 Differencial Heat storage thermostat Freeze free liquid tank Hot water City water Pump Auxiliary Boiler Tank 300-370L 7 Solar space heating system 1985 USH (Udagawa1985) Collector 12m2 Solar floor heating 8 4 USH Solar floor and DHW heating for single family house T Solar contribution Solar collector 1.19 m2 x 6 units : total 11.5 m2 (1985 – 2004) Titled angle : 60 degrees DHW: 50% Space heating: 50% Room air conditioner Pump controller Thermometer Thermometer Surge tank (72 liters) Valve switch CB T DHW supply Electric DHW heater TW Solar floor heating Pump 460 liters 300 mm thick concrete slab C C 50W x 2 2 2 2 T L(17m)D(9m)S(9m) 200 V T3 8.4 kW T2 TH Solar storage tank Switch valve 300 liters City water C : Calory meter 9 Solar House (Chiryu, Aichi Pref.) • Active + Passive Heating • Solar collector+floor heating and Tromb wall (Photo and drawing by Okamoto, Chiryu Heater) 10 5 OM Solar System Integrated solar house with air collector Solar collector (Glass cover) Solar collector Handling Box (w/o Glass cover) outdoor air hot air floor heating DHW tank Concrete slab hot air 11 (OM solar) Solar PV and Thermal Systems Solar PV House appeared (1990s) PV system with well insulated house and Solar DHW heating (Housing area near Akita City, Misawa Home Co.) 12 6 Hybrid Solar House 4 collectors + 24 PV modules (Yazaki Co.) 13 Solar Hot Water Heating System with PV pump PV module Collector 4m2 Water tank 200L (Yazaki Corp.) 14 7 Solar systems for apartment houses Noborito solar house, 1978 – Feasibility study by Japan Housing Corporation - 15 Solar apartment houses Chiryu City Kanazawa City - Examples of solar DHW system for multi-family house in 1980s - Individual system using balcony mounted solar collector 16 8 Solar space and hot water heating for a lowrise apartment house(Chiryu City) (Chiryu heater) Solar apartment house 17 (Chino City, Nagano Pref.) Large Solar Building - Senior Center in Shiobara - Health care center for elderly people Solar heating and cooling system (Yazaki, 2003) 18 9 - Senior Center in Shiobara - Solar heating and cooling system total floor area 610m2 2 Collector 258m 2 Aborption chiller Cooling tower FC units室内(FC)へ 床暖房へ Floor heating HEX B 温水焚吸収式Absorption chiller 冷温水機70.3kw 70.3kW(20RT) Tank for hot spring water, 30ton TankHeat storage 7.2ton tan Swimming温水プール pool 60ton 60t 19 (Yazaki) Fujieda Sunppu Hospital Solar DHW heating system, 2000 Collector 96m2 Hot water supply Tank 5m3 Hot water tank Boiler 1.65m3 x 2units 140kW x 2units 20 (Yazaki) 10 OM Solar Systems - integrated solar house design - (OM Solar) Office building of OM Solar “Egg of Earth”, Hamamatsu, 2004 21 Solar Desiccant Dehumidification and Cooling System (Harunocho Regional Center, Hamamatsu) Dehumidification cooling process Regeneration process MD AHU A Fan Primary AHU B desiccant Damper Cooling coil Secondary desiccant Free access floor FloorAseismatic pit pit Figure 2 Solar desiccant cooling operation in summer (OM solar) 22 11 Expected Solar Energy Use in Japan (Primary Energy, 106 kL Oil/year) FY2003 FY2010 Solar thermal 0.59 0.9 (4.39) Solar PV 0.21 1.18 Wind power 0.28 1.34 New energy total 10.54 19.10 (Gross energy) (1.8%) (3%) 23 Expected Collector Area Collector Area x 106 m2 Existing Area in 2004 7.7 stock Expected until 2010 12.8 Expected installation until 2010 for 4 years, 1.3 (every year) 2007-2010 Installed in 2005* 0.25 *Solar DHW system and Solar Water heater **Collector Area 1m2 = 0.07kL Equivalent Oil 24 12 Feature of Solar Thermal System Solar thermal system vs. PV system z Solar thermal system z Heat load: Hot water heating, space heating and cooling z Solar system: Tightly connected with Heat Load z Heat load influenced by weather condition and behavior of the occupants z PV system z Electricity, for all purpose z Grid connected system: sell and buy the electric power 25 Example of Energy Requirement in Buildings in Japan Residential House Energy Use in Residential House Cooling 46 GJ/family for a year 46GJ/family for year Cooling Space heating 2% DHW 35% Lights+Applinaces Lights and Appliances 28% Space Heating Hot water Heating 35% - Hot water heating and Space heating, Major heat requirements - Solar heating to reduce hot water heating energy - Building thermal insulation and solar energy to reduce space heating energy 26 13 Solar Thermal System for Today, Tomorrow z Integration z Integration with Heat loads and Building service systems z Integration with Building thermal system and Architectural design z Standardization z Standardization of Systems and Components z Standardization of Design and Evaluation Methods z Cost effectiveness z Reduce Installation cost z Improvement of Pay back period Including Finance, Subsidy 27 14.
Recommended publications
  • Installation Guide
    Installation guide Welcome! If you have questions, we have answers. Visit ecobee.com/Support/ecobee3 for tutorials, how-to videos and FAQs. Technical support is also available by email or by phone: [email protected] 1.877.932.6233 (North America) 1.647.428.2220 (International) Compatible systems ecobee3 works with most centralized residential heating and cooling systems. Heating: up to 2 stages Cooling: up to 2 stages Heat pumps: 1 or 2 stages + up to 2 stages auxiliary heat Accessories: Dehumidifier, humidifier or ventilation device 3 Items included in box A ecobee3 thermostat with D Large trim plate back plate and trim plate E Screws and drywall plugs B Remote Sensor and stand F Information booklets C Power Extender Kit G Double-sided adhesives (optional) A B C wire labels Installation Guide Quick Start Guide D E F G 4 Items you’ll need A Phillips screwdriver B Drill for mounting anchors with 3⁄₁₆ inch drill bit A B Tip: Review all the instructions before you start to ensure that there are no surprises during installation. Tip: For accurate temperature readings, install your ecobee3 in a conditioned space, on an interior wall, and away from direct heat sources. 5 Overview of steps Installing your ecobee3 home climate system is easy. Just follow these steps and you’ll be done before you know it. Step 1 Power off your HVAC system page 8 Before doing anything else, power off your system. Step 2 Label the wires page 9 Label each wire with the provided stickers. Step 3 Install Power Extender Kit page 11 The PEK is not required for all installs.
    [Show full text]
  • Experimental Investigations of Using Silica Aerogel
    EXPERIMENTAL INVESTIGATIONS OF USING SILICA AEROGEL TO HARVEST UNCONCENTRATED SUNLIGHT IN A SOLAR THERMAL RECEIVER By Nisarg Hansaliya Sungwoo Yang Louie Elliott Assistant Professor of Chemical Engineering Assistant Professor of Mechanical (Chair) Engineering (Co-Chair) Prakash Damshala Professor (Committee Member) EXPERIMENTAL INVESTIGATIONS OF USING SILICA AEROGEL TO HARVEST UNCONCENTRATED SUNLIGHT IN A SOLAR THERMAL RECEIVER By Nisarg Hansaliya A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master of Science: Engineering The University of Tennessee at Chattanooga Chattanooga, Tennessee December 2019 ii ABSTRACT Significant demand exists for solar thermal heat in the mid-temperature ranges (120 oC – 220 oC). Generating heat in this range requires expensive optics or vacuum systems in order to utilize the diluted solar energy flux reaching the earth’s surface. Current flat plate solar collectors have significant heat losses and achieving higher temperatures without using concentrating optics remains a challenge. In this work, we designed a prototype flat plate collector using silica- aerogel. Optically Transparent Thermally Insulating silica aerogel with its high transmittance and low thermal conductivity is used as a volumetric shield. The prototype collector was subjected to ambient testing conditions during the months of winter. The collector reached the temperatures of 220 oC and a future prototype design is proposed to incorporate large aerogel monoliths for scaled up applications. This work opens up possibilities solar energy being harnessed in intermediate temperature range using a non-concentrated flat plate collector. iii DEDICATION This is dedicated to all the mentors, professors and teachers I have had the privilege to learn from.
    [Show full text]
  • Icomfort S30 Smart Thermostat Installation and Setup Guide
    iComfort® S30 Smart Thermostat Installation and Setup Guide Color Touchscreen Programmable Wi-Fi Communicating Thermostat (12U67) 507536-02 5/2017 Supersedes 10/2016 Software Version 3.2 TABLE OF CONTENTS SHIPPING AND PACKING LIST ............................................. 3 Mag-Mount....................................................... 33 GENERAL ................................................................. 3 Add / Remove Equipment........................................... 33 INSTALLING CONTROL SYSTEM COMPONENTS ............................. 4 Reset ............................................................ 33 Smart Hub Installation................................................... 4 Notifications ........................................................... 33 Mag-Mount Installation.................................................. 5 Tests ................................................................. 33 HD Display External Components......................................... 6 Diagnostics ............................................................ 33 HD Display Installation.................................................. 6 Installation Report...................................................... 33 WIRING FOR CONTROL SYSTEM COMPONENTS............................. 7 Information ............................................................ 34 CONFIGURATING HEAT SECTIONS ON AIR HANDLER CONTROL.............. 12 Dealer — Information............................................... 34 SMART HUB OPERATIONS................................................
    [Show full text]
  • Dodge Cummins Coolant Bypass
    FPE-2018-06 SUBJECT: DODGE CUMMINS COOLANT BYPASS KIT November, 2020 Page 1 of 6 FITMENT: 2003–2007 Dodge Cummins Manual Transmission Only 2007.5-2018 Dodge Cummins Manual and Automatic Transmissions KIT P/N: FPE-CLNTBYPS-CUMMINS-MAN, FPE-CLNTBYPS-CUMMINS-6.7 ESTIMATED INSTALLATION TIME: 2-3 Hours TOOLS REQUIRED: 16mm ratcheting wrench, 10mm socket, 8mm socket, 6mm Allen, 1” wrench, hammer, 5-gallon clean drain pan, 36” pry bar, Scotch-Brite TM pad (included in kit). KIT CONTENTS: Item Description Qty 1 Coolant bypass hose 1 2 Coolant bypass thermostat housing 1 and O-ring 3 Thermostat riser block and O-ring 1 3 4 4 Coolant bypass hose riser bracket 2 2 5 M8 x 1.25, 20mm socket head cap 2 screw 7 6 6 M6 x 1.00 x 60mm flange head bolt 3 5 7 M12 x 1.75, 40mm flange head bolt 2 8 Scotch-Brite TM pad (not pictured) 1 1 WARNINGS: • Use of this product may void or nullify the vehicle’s factory warranty. • User assumes sole responsibility for the safe & proper use of the vehicle at all times. • The purchaser and end user releases, indemnifies, discharges, and holds harmless Fleece Performance Engineering, Inc. from any and all claims, damages, causes of action, injuries, or expenses resulting from or relating to the use or installation of this product that is in violation of the terms and conditions on this page, the product disclaimer, and/or the product installation instructions. Fleece Performance Engineering, Inc. will not be liable for any direct, indirect, consequential, exemplary, punitive, statutory, or incidental damages or fines cause by the use or installation of this product.
    [Show full text]
  • Theoretical Study of the Flow in a Fluid Damper Containing High Viscosity
    Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: effects of shear-thinning and viscoelasticity Alexandros Syrakosa,∗, Yannis Dimakopoulosa, John Tsamopoulosa aLaboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, 26500 Patras, Greece Abstract The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a Finite Volume method, at various excitation frequencies. The oil is modelled by the Carreau-Yasuda (CY) and Phan-Thien & Tanner (PTT) constitutive equations. Both models account for shear-thinning but only the PTT model accounts for elasticity. The CY and other gener- alised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic con- stitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from LAOS (Large Am- plitude Oscillatory Shear) theory. The CY model also overestimates the damper force relative to the PTT, because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity.
    [Show full text]
  • Geometry of Thermodynamic Processes
    Article Geometry of Thermodynamic Processes Arjan van der Schaft 1, and Bernhard Maschke 2 1 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Jan C. Willems Center for Systems and Control, University of Groningen, the Netherlands; [email protected] 2 Univ. Lyon 1, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, Villeurbanne, France; [email protected] * Correspondence: [email protected]; Tel.: +31-50-3633731 Received: date; Accepted: date; Published: date Abstract: Since the 1970s contact geometry has been recognized as an appropriate framework for the geometric formulation of the state properties of thermodynamic systems, without, however, addressing the formulation of non-equilibrium thermodynamic processes. In [3] it was shown how the symplectization of contact manifolds provides a new vantage point; enabling, among others, to switch between the energy and entropy representations of a thermodynamic system. In the present paper this is continued towards the global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian submanifold describing the state properties, which is overarching the locally defined metrics of Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold. The correspondence between objects in contact geometry and their homogeneous counterparts in symplectic geometry, as already largely present in the literature [2,18], appears to be elegant and effective. This culminates in the definition of port-thermodynamic systems, and the formulation of interconnection ports.
    [Show full text]
  • 179 Design of a Hydraulic Damper for Heavy Machinery
    ANALELE UNIVERSIT ĂłII “EFTIMIE MURGU” RE ŞIłA ANUL XVIII, NR. 1, 2011, ISSN 1453 - 7397 Emil Zaev, Gerhard Rath, Hubert Kargl Design of a Hydraulic Damper for Heavy Machinery A hydraulic unit consisting of an accumulator as energy storage element and an orifice providing friction was designed to damp oscillations of a machine during operation. In the first step, a model for the gas spring was developed from the ideal gas laws for the dimensioning the elements. To model the gas process with a graphical simulation tool it is necessary to find a form of the gas law which can be integrated with a numerical solver, such as Tustin, Runge-Kutta, or other. For simulating the working condition, the model was refined using the van der Waals equations for real gas. A unified model representation was found to be applied for any arbitrary state change. Verifications were made with the help of special state changes, adiabatic and isothermal. After determining the dimensional parameters, which are the accumulator capacity and the orifice size, the operational and the limiting parameters were to be found. The working process of a damper includes the gas pre-charging to a predefined pressure, the nearly isothermal static loading process, and the adiabatic change during the dynamic operation. Keywords : Vibration damping, hydraulic damping, gas laws 1. Introduction Mining Machines, like the ALPINE Miner of the Sandvik company in Fig. 1, are subject to severe vibrations during their operation. Measures for damping are re- quired. Goal of this project was to investigate the potential of damping oscillation using the hydraulic cylinders of the support jacks (Fig.
    [Show full text]
  • Section 2: Insulation Materials and Properties
    SECTION 2 INSULATION MATERIALS AND PROPERTIES SECTION 2: INSULATION MATERIALS AND PROPERTIES 2.1 DEFINITION OF INSULATION 1 2.2 GENERIC TYPES AND FORMS OF INSULATION 1 2.3 PROPERTIES OF INSULATION 2 2.4 MAJOR INSULATION MATERIALS 4 2.5 PROTECTIVE COVERINGS AND FINISHES 5 2.6 PROPERTIES OF PROTECTIVE COVERINGS 6 2.7 ACCESSORIES 7 2.8 SUMMARY - INSULATION MATERIALS AND APPLICATION WITHIN THE GENERAL TEMPERATURE RANGES 8 2.9 INSULATION AND JACKET MATERIAL TABLES 10 MP-0 SECTION 2 INSULATION MATERIALS AND PROPERTIES SECTION 2 INSULATION MATERIALS AND PROPERTIES 2.1 DEFINITION OF INSULATION Insulations are defined as those materials or combinations of materials which retard the flow of heat energy by performing one or more of the following functions: 1. Conserve energy by reducing heat loss or gain. 2. Control surface temperatures for personnel protection and comfort. 3. Facilitate temperature control of process. 4. Prevent vapour flow and water condensation on cold surfaces. 5. Increase operating efficiency of heating/ventilating/cooling, plumbing, steam, process and power systems found in commercial and industrial installations. 6. Prevent or reduce damage to equipment from exposure to fire or corrosive atmospheres. 7. Assist mechanical systems in meeting criteria in food and cosmetic plants. 8. Reduce emissions of pollutants to the atmosphere. The temperature range within which the term "thermal insulation" will apply, is from -75°C to 815°C. All applications below -75°C are termed "cryogenic", and those above 815°C are termed "refractory". Thermal insulation is further divided into three general application temperature ranges as follows: A. LOW TEMPERATURE THERMAL INSULATION 1.
    [Show full text]
  • And Tec220x-4(+PIR) Series LONWORKS Network Staged Thermostat Controllers
    TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Code No. LIT-12011611 Technical Bulletin Issued February 8, 2010 Network Variables (NVs) and Configuration Parameters (CPs) List. 3 Network Variable Inputs (NVIs) Table . 8 Network Variable Outputs (NVOs) Table . 10 Configuration Properties (CPs) . 13 Space Comfort Controller Object . 18 Commissioning the Thermostat Using a LONWORKS Network Configuration Tool . 18 Service Pin . 19 TEC22xx-4 Configuration Plug-in. 19 Installing the Plug-in. 19 Registering the Plug-in. 20 Using LN Browser to Display NVs, NCIs, and CPs . 22 Running the Plug-in . 27 Heating - Cooling Tab . 31 Hardware Tab . 32 General Tab . 33 Model Tab . 34 Scheduler Tab . 36 Network Tab . 38 About Tab . 39 Adding a Thermostat to the Network Automation Engine (NAE) . 39 LONWORKS Thermostat Controller Mapping . 40 Preparation . 40 Troubleshooting Guide . 40 Technical Specifications . 43 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS Network Staged Thermostat Controllers . 43 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged 1 Thermostat Controllers Technical Bulletin 2 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Technical Bulletin TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Technical Bulletin Network Variables (NVs) and Configuration Parameters (CPs) List Table 1 shows the NVs and CPs for the TEC226x-4(+PIR) and TEC220x-4(+PIR) Series Thermostat Controllers. Each Network Variable Input (NVI), Network Variable Output (NVO), and Network Configuration Input (NCI) has a reference number as defined in the XIF Resource File, and some objects have a subcategory number.
    [Show full text]
  • Technical Performance Overview of Bio-Based Insulation Materials Compared to Expanded Polystyrene
    buildings Article Technical Performance Overview of Bio-Based Insulation Materials Compared to Expanded Polystyrene Cassandra Lafond and Pierre Blanchet * Department of Wood and Forest Sciences, Laval University, Québec, QC G1V0A6, Canada; [email protected] * Correspondence: [email protected] Received: 5 February 2020; Accepted: 22 April 2020; Published: 26 April 2020 Abstract: The energy efficiency of buildings is well documented. However, to improve standards of energy efficiency, the embodied energy of materials included in the envelope is also increasing. Natural fibers like wood and hemp are used to make low environmental impact insulation products. Technical characterizations of five bio-based materials are described and compared to a common, traditional, synthetic-based insulation material, i.e., expanded polystyrene. The study tests the thermal conductivity and the vapor transmission performance, as well as the combustibility of the material. Achieving densities below 60 kg/m3, wood and hemp batt insulation products show thermal conductivity in the same range as expanded polystyrene (0.036 kW/mK). The vapor permeability depends on the geometry of the internal structure of the material. With long fibers are intertwined with interstices, vapor can diffuse and flow through the natural insulation up to three times more than with cellular synthetic (polymer) -based insulation. Having a short ignition times, natural insulation materials are highly combustible. On the other hand, they release a significantly lower amount of smoke and heat during combustion, making them safer than the expanded polystyrene. The behavior of a bio-based building envelopes needs to be assessed to understand the hygrothermal characteristics of these nontraditional materials which are currently being used in building systems.
    [Show full text]
  • Room Humidistat and Thermostat Combination, Wall Mounting, For
    Room humidistat and thermostat combination, wall mounting, for swimming pools areas and air conditioning Type Q4 DIMENSIONS MAIN FEATURES Main Application: This device is a combination of a humidistat and a room thermostat. It is especially suited for use in air conditioning control of indoor swimming-pool halls.His aesthetics and small size housing (122x70x31mm) allows mounting in most of these applications, but must be protected from splashing water, and used only in ambient air free of chemical contamination or corrosive ingredients. It is designed to turn on heating or cooling, ventilation, humidifiers, dehumidifiers, and heat pumps. It must be vertically wall mounted in a naturally ventilated area Humidity sensing element: hygroscopic polymer film with special treatment, produced by Ultimheat, ensuring a fast response, long life and high stability Humidity setting range: 35 to 95% RH Humidity measuring accuracy: ±5% RH Differential at 50% RH: 8% RH (±3% RH ) Measuring medium: air, pressure-less, non-aggressive Electrical contact: silver contacts, SPDT, 5A 250V, res. For use in humidifier, dehumidifier or ventilation control. Maintenance: The humidity sensing ribbon is maintenance-free in clean air. Air containing solvent can cause measuring errors and failure, depending on the type and concentration. Deposits such as resin aerosols, lacquer aerosols, smokes, which eventually form a water-repellent film are harmful for the measuring element. Temperature measuring element: Bimetal strip Temperature adjustment range: 5-35°C Differential: 0.6+/-0.3°C Electrical contact: silver contacts, SPDT, 5A 250V, res. For use in heating or cooling applications Options: • On Off switch • Thermal anticipator, that provides thermal differential reduction (Needs Neutral+ Line power supply, 230 or 24V) • Remote set point reduction (Needs Neutral+ Line power supply, 230 or 24V) • Temperature printings in °F Connection: screw terminal connection block for 1.5mm² wires, max torque 0.5Nm Mounting: wall mounting, with 2 screws dia 4 mm max, distance 100 x 50 mm.
    [Show full text]
  • Don't Let Dollars Disappear up Your Chimney!
    ENERGY SAVINGTIPS DON’T LET DOLLARS DISAPPEAR UP YOUR CHIMNEY! You wouldn’t leave a window wide open in cold weather. Having a fireplace with an open flue damper is the same as having a window open. That sends precious winter heat and money right up the chimney! Here’s how you can heat your home, and not the neighborhood! KEEP THE FIREPLACE DAMPER CLOSED WHEN THE FIREPLACE IS NOT BEING USED The damper is a flap inside the chimney or flue. It has an open and a closed position. When a fire is burning, the damper should be in the open position to allow smoke to escape up the fireplace flue and out the chimney. When you’re not using the fireplace, the damper should be closed. If you can’t see the handle or chain that opens and closes the damper, use a flashlight and look up inside the chimney flue. The handle could be a lever that moves side to side or back and forth. If a chain operates the damper, you may have to pull both sides to determine which one closes or opens the damper. KEEP YOUR HEAT IN YOUR HOME! Even the most energy efficient homes can fall victim to fireplace air leaks. Your fireplace may be reserved for a handful of special occasions or especially cold nights. When it’s not in use, though, your home loses heat – and costs you money – without you knowing it. Using the heat from your fireplace on a cold winter night may be cozy, but that fire is a very inefficient way to warm up the room.
    [Show full text]